Name:		Paper work 1				
Class:						
Title : The Newto	on's Second I	Law				

Question:

What effect does the varying force and varying mass have upon the acceleration?

Purpose:

To use experimental data to determine the mathematical equation which relates force, mass and acceleration.

Data section:

LINK:

table 1: varying the force

Applied Force (N)	Mass (kg)	Net Force (N)	Velocity-time Information		Acceleration (m/s ²)	
10	2		t= 1s	, v=	m/s	
20	2		t= 1s	, v=	m/s	
30	2		t= 1s	, v=	m/s	
40	2		t= 1s	, v=	m/s	

table 2: varying the mass

Applied Force (N)	Mass (kg)	Net Force (N)	Velocity-time Information		Acceleration (m/s ²)	
30	1		t= 1s	, v=	m/s	
30	2		t= 1s	, v=	m/s	
30	3		t= 1s	, v=	m/s	
30	5		t= 1s	, v=	m/s	

Conclusion

When the force increases, the acceleration become

Discussion of Results

Based on the data, the effect of mass on the acceleration is: