

RATIONAL EXPONENT

- $a^m \times a^n = a^{m+n}$ To multiply numbers with the same base, keep the base and add the indices.
- $\frac{a^m}{a^n} = a^{m-n}$ To divide numbers with the same base, keep the base and subtract the indices.
- $(a^m)^n = a^{m \times n}$ When raising a power to a power, keep the base and multiply the indices.
- $(ab)^n = a^n b^n$ The power of a product is the product of the powers.
- $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ The power of a quotient is the quotient of the powers.
- $a^0 = 1, a \neq 0$ Any non-zero number raised to the power of zero is 1.
- $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$ and in particular $a^{-1} = \frac{1}{a}$

Notice that $(a^{\frac{1}{2}})^2 = a^{\frac{1}{2} \times 2} = a^1 = a$ and $(\sqrt{a})^2 = a$, so $a^{\frac{1}{2}} = \sqrt{a}$.

and $(a^{\frac{1}{3}})^3 = a^{\frac{1}{3} \times 3} = a^1 = a$ and $(\sqrt[3]{a})^3 = a$, so $a^{\frac{1}{3}} = \sqrt[3]{a}$.

In general, $a^{\frac{1}{n}} = \sqrt[n]{a}$ where $\sqrt[n]{a}$ is called the 'nth root of a'.

Example

Simplify: **a** $49^{\frac{1}{2}}$ **b** $27^{\frac{1}{3}}$ **c** $49^{-\frac{1}{2}}$ **d** $27^{-\frac{1}{3}}$

a $49^{\frac{1}{2}}$ $= \sqrt{49}$ $= 7$	b $27^{\frac{1}{3}}$ $= \sqrt[3]{27}$ $= 3$	c $49^{-\frac{1}{2}}$ $= \frac{1}{49^{\frac{1}{2}}}$ $= \frac{1}{\sqrt{49}}$ $= \frac{1}{7}$	d $27^{-\frac{1}{3}}$ $= \frac{1}{27^{\frac{1}{3}}}$ $= \frac{1}{\sqrt[3]{27}}$ $= \frac{1}{3}$
---	--	--	---

Evaluate without using a calculator:

a $4^{\frac{1}{2}}$

b $4^{-\frac{1}{2}}$

c $16^{\frac{1}{2}}$

d $16^{-\frac{1}{2}}$

e. $8^{\frac{1}{3}}$

f. $8^{-\frac{1}{3}}$

g. $64^{\frac{1}{3}}$

h. $64^{-\frac{1}{3}}$

Write the following in index form:

a. $\sqrt{10}$

b. $\frac{1}{\sqrt[3]{10}}$

c. $\sqrt[3]{15}$

d. $\frac{1}{\sqrt[5]{15}}$

e. $\sqrt[4]{19}$

f. $\frac{1}{\sqrt[4]{19}}$

g. $\sqrt[5]{13}$

h. $\frac{1}{\sqrt[5]{13}}$

Example

Simplify:

a. $27^{\frac{1}{3}}$

b. $16^{-\frac{3}{4}}$

a. $27^{\frac{1}{3}} = (3^3)^{\frac{1}{3}}$
= 3^4
= 81

b. $16^{-\frac{3}{4}} = (2^4)^{-\frac{3}{4}}$
= 2^{-3}
= $\frac{1}{2^3}$
= $\frac{1}{8}$

Without using a calculator, find the value of the following:

a. $8^{\frac{2}{3}}$

b. $8^{-\frac{2}{3}}$

c. $4^{\frac{3}{2}}$

d. $4^{-\frac{3}{2}}$

e. $27^{\frac{2}{3}}$

f. $27^{-\frac{2}{3}}$

g. $32^{\frac{2}{5}}$

h. $32^{-\frac{3}{5}}$

i. $64^{\frac{5}{6}}$

j. $125^{-\frac{2}{3}}$

k. $81^{\frac{3}{4}}$

l. $81^{-\frac{3}{4}}$