

9. The K_c value for the dissociation of iodine molecules into iodine atoms is 5.00×10^{-4} at TK.

An analysis was carried out on sample of iodine at TK and the following concentration were obtained $[I_2] = 0.02\text{M}$ and $[I] = 0.001\text{M}$. which of the following is **TRUE**?

- A. $Q_c < K_c$, reaction is moving forward
- B. $Q_c < K_c$, reaction is moving backward
- C. $Q_c > K_c$, reaction is moving backward
- D. $Q_c = K_c$, reaction is at equilibrium

10. At 25°C , the decomposition of N_2O_4 has a K_p value of 0.14.

If the partial pressure of NO at equilibrium is 0.15 atm, what is the partial pressure of N_2O_4 in the mixture?

- A. 0.0032 atm
- B. 0.15 atm
- C. 0.16 atm
- D. 1.07 atm

11. At 25°C , the value of K_p for the reaction

is 7.13. At equilibrium, the partial pressure of NO_2 in a container is 0.15 atm. what is the partial pressure of N_2O_4 in the mixture?

- A. 7.13
- B. 0.15
- C. 0.16
- D. 0.17

12. At 44°C , the value of K_c for the equilibrium

is 50. If at equilibrium, $[HI] = 0.5\text{mol dm}^{-3}$, what is $[I_2]$?

- A. 0.0025
- B. 3.5355
- C. 0.0045
- D. 0.0055

13. For the equilibrium

the value of K_c is 50 at 445°C . If 0.75 mol each of H_2 and I_2 gas are placed in a 1.00dm^{-3} flask at 445°C , what are the concentrations of HI , H_2 and I_2 after equilibrium is established?

- A. 0.7, 0.7, 0.0992
- B. 0.8, 0.08, 0.0992
- C. 0.6, 0.7, 0.0992
- D. 0.7, 0.7, 0.7

14. For the Haber process

$K_p = 1.45 \times 10^{-5}$ atm at 500°C

In an equilibrium mixture of the three gasses, the partial pressure of H_2 is 0.928 atm and that of N_2 is 0.432 atm. What is the partial pressure of NH_3 ?

- A. 0.432
- B. 0.928
- C. 1.45×10^{-5}
- D. 2.24×10^{-3}

15. Hydrogen iodide decompose according to the reaction

If a certain temperature, 30% of HI has dissociated to achieve equilibrium and the total pressure is 2.0 atm, calculate the equilibrium constant, K_p .

- A. 0.15
- B. 0.3
- C. 2.0×10^{-2}
- D. 4.6×10^{-2}