

s block

Valence electronic configuration
 ns^{1-2}

p block

Valence electronic configuration:
 $ns^2 np^{1-6}$

d block

Valence electronic configuration
 $ns^2 (n-1)d^{1-10}$

Question 1:

By referring to the electronic configuration of each element below:

A : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$

B : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$

C : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

D : $1s^2 2s^2 2p^6 3s^2$

E : $1s^2 2s^1$

(a) State the period, group and block for each element.

Elements	Period	Block	Valence electron	Group	Ion
A					A
B					B
C					C
D					D
E					E

(b) State how the elements **A** to **E** are arranged in the periodic table?

The elements are arranged in the order of

(c) Why are elements **C** and **D** in the same group?

Both elements C and D have the same number of
_____.

(d) Why are elements **A** and **C** in the same period?

Both elements A and C have the same
_____.

(e) Between C and D, which one of the elements is more electronegative?

_____.

Remember!

Size of atom $\frac{1}{\propto}$ electronegativity

(f) Between A and C, which one of the elements is more electronegative?

_____.

(g) Between C and D, which one of the elements has higher first ionization energy?

_____.

Remember!

Size of atom $\frac{1}{\propto}$ IE₁

(h) Between A and C, which elements has higher first ionization energy (IE₁)?

_____.