- Acidified potassium dichromate(VI) solution is added into potassium ioride solution in a beaker. Which of the following represents the ionic equation for the redox reaction?
 - A $Cr_2O_7^{2-}(aq) + 6I^{-}(aq) + 14H^{+}(aq) \rightarrow 2Cr^{3+}(aq) + 3I_2(aq) + 7H_2O(1)$
 - B $Cr_2O_7^{2-}(aq) + 2I^{-}(aq) + 14H^{+}(aq) \rightarrow 2Cr^{3+}(aq) + I_3(aq) + 7H_2O(1)$
 - C $CrO_4^{2-}(aq) + 6I^{-}(aq) + 12H^{+}(aq) \rightarrow Cr^{3+}(aq) + 3I_2(aq) + 6H_2O(1)$
 - **D** $CrO_4^{2-}(aq) + 2I^{-}(aq) + 14H^{+}(aq) \rightarrow Cr^{3+}(aq) + I_{-}(aq) + 7H_{-}O(1)$
- A redox reaction can be represented by the following equation.

$$Cl_2(aq) + 2KBr(aq) \rightarrow$$

 $2KCl(aq) + Br_2(aq)$

What can be observed if chlorine is replace with iodine?

- A Purple gas is produced.
- B Colourless solution is produced.
- C No visible change.
- D Brown colour of iodine turns colourless.
- The following equation represents a reaction between chlorine and iron(II) sulphate solution.

$$Cl_1 + 2Fe^{2+} \rightarrow 2Fe^{3+} + 2Cl^{-}$$

Which of the following is true about the reaction?

- A Iron(III) ion is oxidised.
- B Chlorine is reduced.
- C Chlorine is the reducing agent.
- D Iron(II) ion is the oxidising agent.
- Diagram 6 shows a set up of apparatus to investigate a redox reaction.

Diagram 6

Which of the following is true?

	Direction	tion .			
	of the flow of electrons		Reduction		
A	Q ke P	P	Q		
В	Q ke P	Q	P		
C	P ke Q	P	Q		
D	P ke Q	Q	P		

5) Diagram 7 shows a set up of apparatus to investigate a redox reaction involving transfer of electron at a distance.

Diagram 7

What is observed at the electrode *X* and electrode *Y*?

	Electrode X	Electrode Y
A	Orange solution turns green	Colourless solution turns brown
В	Orange solution turns green	Brown solution turns colourless
C	Purple solution turns colourless	Colourless solution turns brown
D	Purple solution turns green	Brown solution turns colourless

Application

- 6) What is the oxidation number for manganese in MnO₄²⁻?
 - A -2 B -4
- C +6 D +7
- T) What is the oxidation number for chromium in Cr₂O₂²-?
 - A +2
- C 2
- B +6
- D -3
- g) Diagram 8 shows a set up of apparatus to investigate a redox reaction involving transfer of electron at a distance.

Diagram 8

What are the solution P and solution Q should be used so that the electrons are flow from electrode X to electrode Y?

	Solution P	Solution Q
A	Bromine water	Iron(II) sulphate solution
В	Potassium bromide solution	Chlorine water
C	Acidified potassium manganate(VII) solution	Potassium iodide solution
D	Acidified potassium dichromate(VI) solution	Bromine water

9) Diagram 9 shows a set-up of apparatus to investigate a redox reaction involving transfer of electron at a distance.

Diagram 9

Which of the following