EXERCISE PRACTICAL LAB REPORT

Part A: Preparation of diluted oxalic acid, $H_2C_2O_4$ solution (Drag and Drop the following procedure to appropriate box in the correct order.)

Add distilled water to the volumetric flask up to the calibrated mark.	Step 1
Rinse a 10 mL pipette with the H ₂ C ₂ O ₄ stock solution.	Step 2
Stir the solution with a glass rod and transfer it into a 250 mL volumetric flask.	Step 3
Fill approximately 100 mL of distilled water into 250 mL beaker.	
Pipette 10 mL of the H ₂ C ₂ O ₄ stock solution and transfer it into the beaker containing the distilled	Step 4
water. The diluted $H_2C_2O_4$ is ready for titration.	Step 5
Rinse a 10 mL pipette with distilled water.	Step 6
Stopper and shake the volumetric flask to obtain a homogenous solution.	Step 7
Rinse the beaker and pour the content into the volumetric flask.	Step 8
	Step 9

PRACTICAL EXERCISE

250 mL of **diluted** Oxalic acid ($H_2C_2O_4$) is prepared by using 10 mL of $H_2C_2O_4$ **stock solution** in 250mL volumetric flask. 25 mL of **diluted** $H_2C_2O_4$ solution is used to titrate with 0.2 M NaOH solution. Volume of NaOH used in the titration is as follows:

(Fill in the empty column with correct answer)

Burette Reading (mL)	Gross	ı	11	III
Final	41.70	25.30	30.70	27.80
Initial	16.00	00.00	5.50	2.50
Volume titrant (NaOH) used				

Calculation:

1.	Average volume of NaOH used:	mL
1.	Average volume of Maori asea.	

2. Chemical equation involved: (Drag and Drop items to appropriate box)

+	+	Drag the answer
Hint: (acid) (base)	(salt)	(?) from here.
3. Calculate the molarity of dilute. Drag the formula to be used here:	<u>:e</u> H₂C₂O₄	NaOH
Type the final answer:	ool L ⁻¹	Na ₂ C ₂ O ₄
4. Calculate the molarity of stoc	k solution H ₂ C ₂ O ₄	H ₂ C ₂ O ₄
Drag the formula to be used here :		M ₁ V ₁ =M ₂ V ₂
Type the final answer:	nol L ⁻¹	M = n/V

