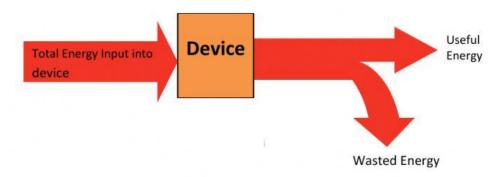
Chapter Review quarter 1

Class:

Total Marks: /10

## **Energy and Efficiency Worksheet**

| For the following | devices stat | e what type of En                | ergy is used | from this list: | (5marks) |
|-------------------|--------------|----------------------------------|--------------|-----------------|----------|
| Chemical          | Kinetic      | Heat (thermal)                   | Sound        | Electrical      | Light    |
| Light bulb:       |              | Energy                           |              | Energy          |          |
| Electric Drill:   | Inp          | ut Energy                        |              |                 |          |
|                   | Use          | ful Energy                       |              |                 |          |
|                   | wa Wa        | ste Energy                       | &            |                 |          |
| TV:               | Usef         | Energy<br>ul Energy<br>te Energy | &            |                 |          |
| Car engine:       |              | Useful Energy<br>Waste Energy _  |              |                 | _        |
| Bunsen burner:    | H            | ě                                | nergy        |                 |          |




A Sankey diagram represents the energy transfer through a device. Knowing that energy **cannot be created or destroyed**, energy input must equal the total energy output:

 $Total\ input\ energy = useful\ energy\ delivered + energy\ wasted$ 

## A Sankey diagram shows this:

Note: the width of the arrows demonstrates the amount of energy.



The greater the percentage of energy that is transformed into useful energy in a device, the more efficient a device is:

$$Efficiency\ of\ Device = \frac{\textit{Useful\ energy\ transferrered\ by\ the\ device\ (output)}}{\textit{Total\ energy\ supplied\ to\ the\ device\ (input)}}$$

Efficiency can be written as either a number (which is never more than 1) or as a percentage (never more than 100%). Neither have units.

For example: A light bulb radiates 10J of energy as light, for every 60J of electrical energy we supply to it.

Efficiency of a lightbulb = 
$$\frac{10}{60}$$
 = 0.17 (as a number)

Efficiency of a lightbulb = 
$$\frac{10}{60} \times 100 = 17\%$$
 (as a percentage)



Now **complete** the table below, **calculating the efficiency** as both a number and a percentage: (5marks)

|                      | Energy in  | Energy out                            | Efficiency? |
|----------------------|------------|---------------------------------------|-------------|
| Electric Drill       | 160J       | Kinetic 90J<br>Sound 30J<br>Heat 40J  |             |
| Hair drier           | 180J       | Heat 170J<br>Sound 10J                |             |
| Mobile phone charger | <b>1</b> J | 0.8J Electrical<br>0.2J Heat          |             |
| Electric hob         | 1500J      | Heat 1300J<br>Light 150J<br>Sound 50J |             |
| Kettle               | 2.5kJ      | Heat 2.2kJ<br>Sound 0.3kJ             |             |

