TUTORIAL CHAPTER 4

Question 14

A side reaction in the manufacture of rayon from wood pulp is

$$3CS_2 + 6NaOH \rightarrow 2Na_2CS_3 + Na_2CO_3 + 3H_2O$$

How many grams of Na₂CS₃ are produced in the reaction between 92.5

mL of liquid CS₂ and 2.78 mol NaOH?

(Given density of $CS_2 = 1.26 g/mL$)

Density = Mass solution ,g Volume solution, mL

Mass of CS_2 = Density x Vol solution

= _____ g

Mol of $CS_2 = \underline{\qquad} g$

g/mole

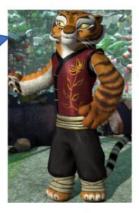
= _____ mole

Ar of Na = 23

Ar of O = 16

Ar of H = 1

Ar of C = 12


Ar of S = 32

Mol of NaOH = 2.78mole

Mole of product formed based on LR!!

There are **3 methods** to determine the LR:

- 1) Compare mole ratios of the reactants
- 2) Compare the amount of products based on different reactants
 - 3) Compare the mole needed vs mole required

Lets say we use mole ratio of the reactants to determine the LR

Compare the mole ratio of the reactants

$$3CS_2 + 6NaOH \rightarrow 2Na_2CS_3 + Na_2CO_3 + 3H_2O$$

Mole ratio of
$$CS_2$$
 = mol of CS_2 = = = S. Coefficient CS_2

Mole ratio of CS ₂	mole ratio of NaOH
Limiting reactant is	

From balanced equation

$$=$$
 _____ moles Na₂CS₃

Mole
$$Na_2CS_3 = mass Na_2CS_3$$

 $molecular mass Na_2CS_3$
 $mass Na_2CS_3 = g$