Question 7 Iron reacts with steam according to the equation: $$3Fe(s) + 4H2O(g) \rightarrow Fe3O4(s) + 4H2(g)$$ In an experiment, 24.5 g of iron were reacted with 12.6 g of steam. Calculate: a) the mass of Fe₃O₄ produced. Mole of product formed based on LR There are 3 methods to determine the LR: - 1) Compare mole ratios of the reactants - 2) Compare the amount of products based on different reactants - 3) Compare the mole needed vs mole required Lets say we use mole ratio of the reactant to determine the LR First, calculate mole of reactants available Molar mass H2O Ar of Fe = 55.9 Ar of H = 1 Ar of O = 16 **#LIVEWORKSHEETS** = mol H₂O @ steam available Compare the mole ratio of the reactants $$3Fe(s) + 4H2O(g) \longrightarrow Fe3O4(s) + 4H2(g)$$ S. Coefficient Fe Mole ratio of $$H_2O = \text{mol of } H_2O = = \text{mol of } H_2O \text{mol$$ S. Coefficient H₂O Mole ratio of Fe ______mole ratio of H_2O Limiting reactant is _____ $$3Fe(s) + 4H2O(g) \longrightarrow Fe3O4(s) + 4H2(g)$$ From the balanced equation Mole $$Fe_3O_4$$ = mass Fe_3O_4 Molar mass Fe₃O₄ Mass of $$Fe_3O_4$$ = Mole x Molar mass Fe_3O_4 ## **TUTORIAL CHAPTER 4** Mole of H₂ produced depends on LR | b) | calcula | ate th | e volum | e of H ₂ | formed | at STP. | |----|---------|--------|---------|---------------------|--------|---------| |----|---------|--------|---------|---------------------|--------|---------| From the balanced equation ____ mol Fe = ____ mol H₂ _____ mol Fe = ___ x ____ mol H₂ = _____ mol H₂ At STP, 1 mol H_{2 gaseous} will occupies _____ L Vol of H_2 at STP = mole H_2 x Molar volume at STP = _____hole x _____L/mole What is molar volume at 0°C and 1atm@ STP? = _____ L