

Question 7

Iron reacts with steam according to the equation:

In an experiment, 24.5 g of iron were reacted with 12.6 g of steam. Calculate:

a) the mass of Fe_3O_4 produced.

Mole of product formed based on LR

There are **3 methods** to determine the LR:

- 1) Compare mole ratios of the reactants
- 2) Compare the amount of products based on different reactants
- 3) Compare the mole needed vs mole required

Let's say we use mole ratio of the reactant to determine the LR

First, calculate mole of reactants available

$$\text{Mole Fe available} = \frac{\text{mass Fe}}{\text{Molar mass Fe}}$$

$$= \underline{\hspace{2cm}}$$

$$= \underline{\hspace{2cm}} \text{ mol Fe available}$$

Ar of Fe = 55.9

Ar of H = 1

Ar of O = 16

$$\text{Mole Steam available} = \frac{\text{mass H}_2\text{O}}{\text{Molar mass H}_2\text{O}}$$

$$= \underline{\hspace{2cm}}$$

= mol H₂O @ steam available

Compare the mole ratio of the reactants

Mole ratio of Fe = $\frac{\text{mol of Fe}}{\text{S. Coefficient Fe}} = \underline{\hspace{2cm}} =$

Mole ratio of H₂O = $\frac{\text{mol of H}_2\text{O}}{\text{S. Coefficient H}_2\text{O}} = \underline{\hspace{2cm}} =$

Mole ratio of Fe _____ mole ratio of H₂O

Limiting reactant is _____

From the balanced equation

$$\underline{\hspace{2cm}} \text{ mol Fe} = \underline{\hspace{2cm}} \text{ mol Fe}_3\text{O}_4$$

$$\underline{\hspace{2cm}} \text{ mol Fe} = \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} \text{ mol Fe}_3\text{O}_4$$

$$= \underline{\hspace{2cm}} \text{ mole Fe}_3\text{O}_4$$

$$\text{Mole Fe}_3\text{O}_4 = \frac{\text{mass Fe}_3\text{O}_4}{\text{Molar mass Fe}_3\text{O}_4}$$

Ar of Fe = 55.8

Ar of O = 16

$$\text{Mass of Fe}_3\text{O}_4 = \text{Mole} \times \text{Molar mass Fe}_3\text{O}_4$$

$$= \underline{\hspace{2cm}} \text{ g}$$

Mole of H_2 produced
depends on LR

b) calculate the volume of H_2 formed at STP.

From the balanced equation

$$\underline{\quad} \text{ mol Fe} = \underline{\quad} \text{ mol H}_2$$

What is molar volume at
0°C and 1atm@ STP?

$$\underline{\quad} \text{ mol Fe} = \underline{\quad} \times \underline{\quad} \text{ mol H}_2$$

$$= \underline{\quad} \text{ mol H}_2$$

At STP, 1 mol H_2 gaseous will occupies L

Vol of H_2 at STP = mole H_2 x Molar volume at STP

$$= \underline{\quad} \text{ mole} \times \underline{\quad} \text{ L/mole}$$

$$= \underline{\quad} \text{ L}$$