Name:	Date:	

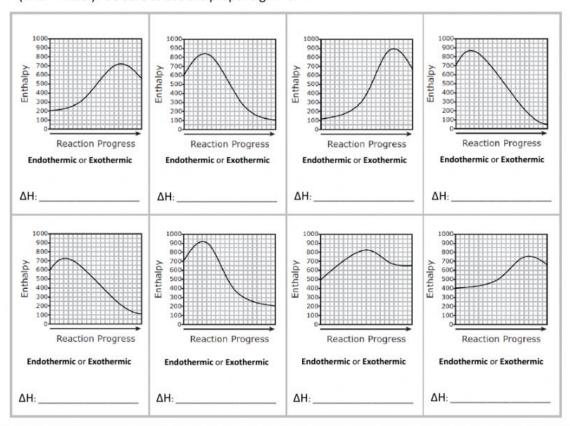
Homework: Heat and the Conservation of Energy

Convert between the temperature scales below.

Answer the following questions about heat, mass, temperature change and specific heat.

1. A sample of copper with a mass of 50.0 grams goes from an initial temperature of 22.0°C to a final temperature of 41.6°C. Calculate the change in thermal energy, and state whether it was *gained* or *lost*.

Substance	Specific Heat [J/(g×°C)]	
Water	4.184	
Wood	1.760	
Carbon (graphite)	0.710	
Glass	0.664	
Iron	0.450	
Copper	0.385	
Brass	0.380	
Aluminum	0.897	


2. A sample of graphite with a mass of 15.0 grams drops from an initial temperature of 22°C to a final temperature of 12°C. Calculate how much heat was transferred, and state whether it was *gained* or *lost* based on the sign of your answer.

1. Heat travels through a solid by what pro	cess?

For each of the graphs below, circle whether the change in enthalpy shown is exothermic or endothermic, then calculate how many kilojoules of heat were absorbed or released (final – initial). Be sure to use the proper sign: - or +.

$$4Fe + 3O_2 \rightarrow 2Fe_2O_3 + heat$$

5. What type of reaction is shown above: endothermic or exothermic? _

$2NH_3 + heat \rightarrow N_2 + 3H_2$

6. What type of reaction is shown above: endothermic or exothermic? __