- 27. Which one of the following pairs exhibits the same hybrid orbitals of central atom? - A. PCl₃ and NH₃ - B. PCl₃ and BCl₃ - C. NCI₃ and AICI₃ - D. BeCl₂ and H₂O - 28. In hybridisation process of ICl₃ molecule, ____ electron/electrons in 5p orbital excited to 5d orbitals before it form ___ hybrid orbital. - A. 3, sp^3d C. 1, sp³d B. 1, sp³ D. 3, sp³ 29. During melting, the intermolecular forces are overcome by heat supplied. Choose the **incorrect** pair. | | Substance | Force being overcome | |----|--------------------|--| | A. | Ice | hydrogen bonds
between H ₂ O
molecules | | B. | Sulphur | van der Waal's
forces between S ₈
molecules | | C. | Sodium
chloride | ionic bond between opposite charged ions | | D. | Naphthalene | Van der Waals
forces between
naphthalene
molecules | - 30. The following statements is true except - A. C₄H₁₀ has higher boiling point than C₃H₈ because it has higher molar mass hence C₄H₁₀ have stronger London dispersion forces. - B. C₂H₆ has higher boiling point than CH₃F because C₂H₆ higher molar mass. - C. Cl₂ has higher molar mass than C₄H₁₀ thus stronger London dispersion forces thus Cl₂ has higher boiling point. - D. Because of dipole-dipole forces are stronger than dispersion forces, ICI has higher boiling point than Br₂. - 31. Between ethanol, C₂H₅OH, and water, H₂O, which one have higher boiling point? Explain. - Ethanol has higher boiling point than water because it has greater molar mass. - B. Ethanol has lower boiling point than water because it cannot form hydrogen bond between molecules. - C. Water has higher boiling point than ethanol because water can from more intermolecular hydrogen bond. - The boiling point of both are not much different because both molecules can form hydrogen bond. - 32. Hydrogen fluoride has higher boiling point than ammonia. Choose the most accurate statement to explain this. - Fluorine is less electronegative than nitrogen. Thus, hydrogen bond is stronger. - B. Fluorine is more electronegative than nitrogen. Thus, hydrogen bond is stronger. - Hydrogen fluoride forms more hydrogen bonds per molecule than ammonia can form. - The fluorine-hydrogen bond is stronger than the nitrogen-hydrogen bond.