Name:	

Oxidation Numbers Worksheet

Directions: Use the *Rules for Assigning Oxidation Numbers* to determine the oxidation number assigned to each element in each of the given chemical formulas.

Rules for Assigning Oxidation Numbers	Example:
The oxidation number of any uncombined element is 0.	Ne, O₂▷ 0
2. The oxidation number of a monatomic ion equals the charge on the ion.	Fe ⁺³ > +3
3. The oxidation number of halogens in a compound is mostly -1.	F -1 ⊳ -1
4. Oxygen has an oxidation number of -2 unless it's a peroxide is -1	H ₂ O ⁻² ▷ -2 Na2O2 ⁺² ▷ -1
5. The oxidation number of a metal is +1 in Group 1 and +2 in Group 2.	K ⁺¹ ⊳ <mark>+1</mark>
6. Hydrogen works with +1 with nonmetals and -1 with metals.	H ⁺¹ Cl ⁻¹ ▷ +1 Na ⁺¹ H ⁻¹ ▷ -1
7. The sum of the oxidation numbers of all atoms in a neutral compound is 0.	71
8. The sum of the oxidation numbers of all atoms in a polyatomic ion = the char	ge of the ion.

1. Give oxidation numbers for the underlined atoms in these molecules:

a.	Cs ₂ O	Cs:	O:		i. N ₂	N:	
b.	N ₂ O ₃	N:	O:		j. Kr	Kr:	
c.	Na ₄ SiO ₄	Na:	Si:	O:	k. H ₂ O	H:	0:
d.	K ₂ Cr ₂ O ₇	K:	Cr:	O:	l. FeO	Fe:	0:
e.	H ₂ O ₂	H:	O:	(This is a peroxide)	m. CaS	Ca:	S:
f.	Al(OH)3	Al:	0	H:	n. H ₂	H:	
g.	HPO ₃	H:	P:	O:	o. He	He:	
h.	H ₂ SeO ₃	H:	Se:	O:	p. H ₂ SO ₄	S:	H:

2. Give the oxidation numbers for the following ions

a. Cu +1	Cu:	b. Co ²⁺ Co	:	c. Cl ⁻¹	Cl:	
d. 10 ₂ -1	I: O:	e. SbF ₆ -1 Sb	: F:	f. OH ⁻¹	O:	H:

