ACTIVITY # 2.1 Mass and Weight Date due:_____ 12 1. The mass and weight of an object are related by the equation Value for g on Earth = 10 N/kg, value for g on the Moon = 1.6 N/kg (a) Distinguish between the terms mass and weight. | mass | | | |--------|-----|-----| | | | [1] | | weight | [4] | | | | | [1] | (b) This apparatus is used to measure mass. (i) Name the apparatus. [1] (ii) State the value of the mass of the object shown. 13 | | | and the weight of the object on Earth. (Show working). | | |--------|---------|---|--------| | | | | | | 53 | | | | | | | | [2] | | (iv) | Fi | and the mass and weight of the same object on the Moon. ason for your answer in both cases. (Show working). | Give a | | | m | ass | | | | | | | | | | ason | [2] | | | we | pight | | | | | | | | | res | ason | _ [2] | | | | | | | This q | uestion | n is about mass, weight and the stretching of springs. | | | (a) | An as | stronaut of mass 70 kg flies on a mission to the Moon. | | | | (i) | | | | | (-) | Calculate the astronaut's weight on Earth. (Use $g=10\ N/kg$). | | | | (-) | Calculate the astronaut's weight on Earth. (Use $g=10\ N/kg$). | [2] | | | (ii) | | [2] | | | | | [2] | | | | | [1] | 2. 3. The apparatus shown is used to measure mass. | (a) | (i) | Name the apparatus. | | |-----|-------|---|-----------| | | (ii) | Define mass. | [1] | | | | | [1] | | | (iii) | Find the mass of the object shown on the apparatus. | [2] | | | (iv) | If the gravitational force (g) on a 1 g mass is 10 N/kg, find the of this object. | ne weight | | (b) | (i) | Give TWO differences between mass and weight. | | 2_____ (ii) State the reading on this apparatus if it were taken to the Moon, give a reason for this new reading. new reading ______ reason ______ Total marks [10] 4. This question is about forces, weight and mass (a) Complete the table by placing ticks () to show if the quantities are vector or scalar. An example is done for you. | quantity | vector | scalar | |----------|--------|---------| | force | ~ ~ | 72723 | | mass | | seeijd. | | weight | | | [2] (b) Write the equation that represents the relationship between mass and weight. [2] (c) A balance is used to measure the mass of a stone on earth. The balance reads 9.0 kg. The stone is then weighed with a spring scale graduated in newtons. (g = 10 N/kg) Calculate the reading on the spring scale. [2] - (d) The stone is transported to the moon. Given that gravity is one-sixth of that on the Earth near the surface of the Moon, find - (i) the mass of the stone on the Moon; [1] (ii) the weight of the stone on the Moon. [1] (e) On Mars, the stone weighs 34.2 N. Calculate the gravitational field strength of Mars. [2] Total marks [10]