

MISS TEGUALDA ZUBICUETA GAETE TALLER PTU MATEMÁTICA

OPERATORIA BÁSICA EN LOS NÚMEROS RACIONALES

Nombre del Estudiante:	Curso: 1° Medio
Nombre de la Unidad: Números	
Objetivo de aprendizaje: Mostrar que comprenden las relaciones entre	números racionales y decimales,
transfiriendo las propiedades de las operaciones básicas al ámbito nume	érico correspondiente.

NÚMEROS RACIONALES

Los números racionales son todos aquellos números de la forma $\frac{a}{b}$ con a y b números enteros y b distinto de cero. El conjunto de los números racionales se representa por la letra Q.

$$Q = \left\{ \frac{a}{b} / a, b \in Z \ y \ b \neq 0 \right\}$$

IGUALDAD ENTRE NÚMEROS RACIONALES

Sean
$$\frac{a}{b}$$
, $\frac{c}{d} \in Q$. Entences, $\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c$

ADICIÓN Y SUSTRACCIÓN DE NÚMEROS RACIONALES

Si $\frac{a}{b}$, $\frac{c}{d} \in \mathbb{Q}$, entonces:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

OBSERVACIONES

- 1. El inverso aditivo (u opuesto) de $\frac{a}{b}$ es $-\frac{a}{b}$, el cual se puede escribir también como $\frac{-a}{b}$ o $\frac{a}{-b}$
- 2. El número mixto $A \frac{b}{c}$ se transforma a fracción con la siguiente fórmula:

$$A\frac{b}{c} = \frac{A \times c + b}{c}$$

MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS RACIONALES

Si
$$\frac{a}{b}$$
, $\frac{c}{d} \in \mathbb{Q}$, entonces:

MULTIPLICACIÓN

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

DIVISIÓN

$$\frac{a}{b}: \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}, c \neq 0$$

OBSERVACIÓN

El inverso multiplicativo (o recíproco) de $\frac{a}{b}$ es $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$, con $a \ne 0$

OBSERVACIONES

- 1. Para comparar números racionales, también se pueden utilizar los siguientes procedimientos:
- a. igualar numeradores.
- b. igualar denominadores.
- c. convertir a número decimal.

NÚMEROS DECIMALES

Al efectuar la división entre el numerador y el denominador de una fracción, se obtiene un desarrollo decimal, el cuál puede ser finito, infinito periódico o infinito semiperiódico.

- a. Desarrollo decimal finito: Son aquellos que tienen una cantidad limitada de cifras decimales. Ejemplo: 0,425 tiene 3 cifras decimales
- b. Desarrollo decimal infinito periódico: Son aquellos que están formados por la parte entera y el período.

Ejemplo: 0.444... = 0.4

 Desarrollo decimal infinito semiperiódico: Son aquellos que están formados por la parte entera, un anteperíodo y el período.

Ejemplo: $24,42323... = 24,4\overline{23}$

OPERATORIA CON NÚMEROS DECIMALES

1. Adición o sustracción de números decimales: Para sumar o restar números decimales se ubican las cantidades enteras bajo las enteras, las comas bajo las comas, la parte decimal bajo la decimal y a continuación se realiza la operatoria respectiva. Así por ejemplo: 0,19

3,81

+ 22,2 26,20

Multiplicación de números decimales: Para multiplicar dos o más números decimales, se multiplican como si fueran números enteros, ubicando la coma en el resultado final, de derecha a izquierda, tantos lugares decimales como decimales tengan los números en conjunto.

Así por ejemplo: 3,21 · 2,3 642

7,383

División de números decimales: Para dividir números decimales, se puede transformar el dividendo y el divisor en números enteros amplificando por una potencia en base 10.

Por ejemplo: 2,24: 1,2 se amplifica por 100

224: 120 y se dividen como números enteros

TRANSFORMACIÓN DE DECIMAL A FRACCIÓN

1. Decimal finito: Se escribe en el numerador todos los dígitos que forman el número decimal y en el denominador una potencia de 10 con tantos ceros como cifras decimales tenga dicho número.

Por ejemplo: $3,24 = \frac{324}{100}$

2. Decimal infinito periódico: Se escribe en el numerador la diferencia entre el número decimal completo (sin considerar la coma) y el número formado por todas las cifras que anteceden al período y en el denominador tantos nueves como cifras tenga el período.

Por ejemplo: $2,\overline{15} = \frac{215 - 2}{99}$

3. Decimal infinito semiperiódico: Se escribe en el numerador la diferencia entre el número completo (sin considerar la coma) y el número formado por todas las cifras que anteceden al período y en el denominador se escriben tantos nueves como cifras tenga el período, seguido de tantos ceros como cifras tenga el anteperíodo.

Por ejemplo: $5,3\overline{4} = \frac{534 - 53}{90}$

APROXIMACIONES

Frecuentemente conviene redondear o truncar un número, dejando una aproximación con menos cifras significativas, de las que tiene originalmente.

REDONDEO -

Para redondear un número decimal finito o infinito se agrega 1 al último dígito que se conserva (redondeo por exceso), si el primero de los dígitos eliminados es mayor o igual a 5; si la primera cifra a eliminar es menor que 5, el último dígito que se conserva se mantiene (redondeo por defecto). Por lo tanto, como ejemplos, BAJO ESTA REGLA, al redondear a la centésima los números 4,748 y 9,5237 se obtiene 4,75 y 9,52, respectivamente.

TRUNCAMIENTO

ESTIMACIONES

Realizar un cálculo estimativo, consiste en efectuarlo con cantidades aproximadas por redondeo a las dadas, reemplazando dígitos distintos de ceros por ceros, dejando la cantidad de cifras significativas que se indique (lo que habitualmente es

GUÍA DE EJERCICIOS

1.-
$$5 \cdot \left(\frac{0.05}{0.5}\right)$$

- A) 0,5 B) 0,05
- C) 0,005
- D) 50 E) 500

2.- El orden de los números a
$$=\frac{2}{3}$$
, b $=\frac{5}{6}$ y c $=\frac{3}{8}$ de menor a mayor es

- A) a < b < c</p>

- B) b < c < a C) b < a < c D) c < a < b E) c < b < a

3.-
$$40 - 20 \cdot 2.5 + 10 =$$

- A) 0 B) -20 C) 60 D) 75

- E) 250

4.-
$$\frac{9}{8} - \frac{3}{5} =$$

- A) 0,15 B) 0,5 C) 0,52 D) 0,525 E) 2

5.- Si a
$$\frac{5}{6}$$
 se le resta $\frac{1}{3}$ resulta;

A)
$$-1/2$$

$$6.- \frac{1}{\frac{3}{8}-0.75} + \frac{1}{\frac{3}{8}-0.25}$$

- A) 15/3 B) 16/3
- C) 16/3 D) 4
- 8/3

- 7.- Si t = 0,9 y r = 0,01, entonces $\frac{\tau r}{r}$ =
 - A) 0,89
 - B) 0,9
 - C) 8,9
 - D) 89
 - E) Ninguno de los valores anteriores
- 8.- En la igualdad $\frac{1}{P} = \frac{1}{Q} \frac{1}{R}$, si P y R se reducen a la mitad, entonces para que se mantenga el equilibrio, el valor de **Q** se debe
 - A) Duplicar.
 - B) Reducir a la mitad.
 - C) Mantener igual.
 - D) Cuadruplicar.
 - E) Reducir a la cuarta parte.
- 9.- Juan dispone de \$ 6.000 para gastar en entretención. Si se sabe que cobran \$1.000 por jugar media hora de pool y \$600 por media hora en Internet, entonces ¿cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?
 - I) Juan puede jugar a lo más 3 horas de pool
 - II) Juan puede conectarse a lo más 5 horas en Internet
 - III) Juan puede jugar 1,5 horas de pool y conectarse 2,5 horas a internet

- A) Solo III
- B) Solo I y II
- C) Solo I y III
- D) Solo II y III
- E) I, II y III
- 10.- $\frac{1}{x} + \frac{1}{x} + \frac{1}{x} =$
 - A) 3
 - B) 1/x3
 - C) 3/x
 - D) 1/3x
 - E) 3/x3
- 11.- Si $P = \frac{1}{2}RH$, entonces H^{-1} es igual a:
 - A) $\frac{2P}{R}$
 - B) $-\frac{R}{2P}$
 - C) $-\frac{2P}{R}$
 - D) $\frac{2R}{P}$
 - E) $\frac{R}{2P}$

12.
$$-\frac{1}{3} + \frac{1}{6} \cdot \frac{1}{2} =$$

- C) $\frac{1}{9}$ D) $\frac{2}{3}$ E) $\frac{1}{4}$

$$\frac{2,6-2\cdot 3,8}{2,6\cdot 6+3,8}=$$

- E)

$$14.- \frac{1}{3} + \frac{2}{1 - \frac{1}{4}} =$$

- A) $\frac{3}{2}$ B) $\frac{1}{3}$ C) $\frac{11}{6}$
- D) 1
- E) 3

15.-
$$\frac{\frac{50}{100} + 0.5}{(0.5) \cdot 2}$$

- A) 10 B) 1 C) 0,1 P D) 0,25

- 16.- Una persona debe recorrer 12,3 kilómetros y ha caminado 7.850 metros. ¿Cuánto le falta por recorrer?
 - A) 4,45 km
 - B) 4,55 km
 - C) 5,55 km
 - D) 5,45 km
 - E) 6,62 km
- Si a es un número natural mayor que 1, ¿cuál es la relación correcta entre las fracciones: $p = \frac{3}{a}$ t = $\frac{3}{a-1}$ r = $\frac{3}{a+1}$
 - A) p < t < r
 - B) r
 - C)t < r < p
 - D) r < t < p
 - E) p < r < t
- 18.- Se mezclan 2 litros de un licor P con 3 litros de un licor Q. Si 6 litros del licor P valen \$ a y 9 litros del licor Q valen \$ b,¿cuál es el precio de los 5 litros de mezcla?
 - A) $\$ \frac{a+b}{3}$
 - B) $\$ \frac{a+b}{5}$
 - C) \$(2a + 3b)
 - D) $\$ \frac{3a + 2b}{18}$
 - E) $\$ \frac{5 \cdot (3a + 2b)}{18}$
- 19.- Juan tiene un bidón de 5 litros de capacidad, llenado hasta los $2\frac{1}{3}$ litros. ¿Cuántos litros le faltan para llenarlo?
 - A) $2\frac{1}{3}$
 - B) $2\frac{2}{3}$
 - C) $2\frac{3}{2}$
 - D) $3\frac{1}{3}$
 - E) $1\frac{2}{3}$
- 20.- $\frac{1}{3} \div \frac{1}{4} \circ \frac{2}{3} =$
 - A) $\frac{1}{2}$
 - B) 1/4
 - C) $\frac{1}{5}$
 - D) $\frac{1}{12}$
 - E) $\frac{4}{21}$

- 21.- Se define $a * b = \frac{1}{ah}$, entonces a * (b * c) es igual a:
 - A) $\frac{1}{abc}$

 - E)
- 22.- Sean a, b, c y d números enteros distintos entre sí y distinto de cero.

Si
$$P = \frac{a}{b} + d$$
 y $Q = \frac{a}{c} + d$, ¿cuál(es) de las siguientes igualdades es

(son) siempre verdadera(s)?

II)
$$\frac{P}{Q} = \frac{c}{b}$$

II)
$$\frac{P}{Q} = \frac{c}{b}$$
 III) $P \cdot Q = \frac{a^2}{bc} + d^2$

- A) Sólo I
- B) Sólo III
- C) Sólo I y III
- D) I, II y III
- E) Ninguna de ellas.

$$23.- \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + 1}}} =$$

- D) $\frac{3}{5}$
- E) $\frac{1}{2}$
- 24.- Tres atletas corrieron los 100 metros planos, Javier cronometró 11,3 segundos, Arturo 11,02 segundo y Marcelo 11,2 segundos. ¿cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?
 - I) Javier llegó después de Marcelo
 - II) Entre Arturo y Marcelo hay 18 centésimas de segundo de diferencia al llegar a la meta
 - III) Arturo llegó primero
 - A) Solo I
 - B) Solo I y II
 - C) Solo I y III
 - D) Solo II y III
 - E) I, II y III