

Empirical formula(EF) and molecular formula (MF)

EF:

Simplest ratio of atoms of each element in the compound

Example:

MF:

Actual ratio of atoms of each element in the compound

Example:

molar mass

molar mass

molecular formula = n (Empirical formula)

LIVE

WORKSHEETS

d. A compound P that consists of carbon, hydrogen and oxygen has a molar mass of 60.0 g mol^{-1} . If the complete combustion of 1.470 g of compound P produced 2.156 g of CO_2 and 0.882 g of H_2O , determine

- The empirical formula of compound P .
- The molecular formula of compound P

If it is
burning/combustion,
the reaction will
involve Oxygen gas

Mass of the C in CO_2 is the mass of C in the P. Use molar mass ratio method to determine the mass of C in CO_2

Mass of the H in H_2O is the mass of H in the P. Use molar mass ratio method to determine the mass of H in H_2O

$$\text{Mass of C in } \text{CO}_2 = \frac{\text{molar mass C}}{\text{molar mass } \text{CO}_2} \times \text{mass } \text{CO}_2$$
$$= \frac{\boxed{} \text{g/mol}}{\boxed{} \text{g/mol}} \times \boxed{} \text{g}$$
$$= \boxed{}$$

Do you know why we cannot use the **same method @ molar mass ratio of O** to determine the mass of Oxygen in compound P?

$$\text{Mass of H in H}_2\text{O} = \frac{\text{molar mass H}}{\text{molar mass H}_2\text{O}} \times \text{mass H}_2\text{O}$$
$$= \frac{\boxed{} \text{g/mol}}{\boxed{} \text{g/mol}} \times \boxed{} \text{g}$$
$$= \boxed{}$$

$$\text{Mass of P} = \text{mass C} + \text{mass H} + \text{mass O}$$

$$\text{mass O} = \boxed{}$$

Element	C	H	O
Mass, g	<input type="text"/>	<input type="text"/>	<input type="text"/>
Mole	$\frac{\text{Mass C}}{\text{Molar mass C}} = \frac{\text{Mass C}}{\text{Molar mass C}} = \frac{\text{Mass C}}{\text{Molar mass C}}$ <input type="text"/>	$\frac{\text{Mass H}}{\text{Molar mass H}} = \frac{\text{Mass H}}{\text{Molar mass H}} = \frac{\text{Mass H}}{\text{Molar mass H}}$ <input type="text"/>	$\frac{\text{Mass O}}{\text{Molar mass O}} = \frac{\text{Mass O}}{\text{Molar mass O}} = \frac{\text{Mass O}}{\text{Molar mass O}}$ <input type="text"/>
Ratio of mole	$\frac{\text{Mole of C}}{\text{Smallest mole}} = \frac{\text{Mole of C}}{\text{Smallest mole}} = \frac{\text{Mole of C}}{\text{Smallest mole}}$ <input type="text"/>	$\frac{\text{Mole of H}}{\text{Smallest mole}} = \frac{\text{Mole of H}}{\text{Smallest mole}} = \frac{\text{Mole of H}}{\text{Smallest mole}}$ <input type="text"/>	$\frac{\text{Mole of O}}{\text{Smallest mole}} = \frac{\text{Mole of O}}{\text{Smallest mole}} = \frac{\text{Mole of O}}{\text{Smallest mole}}$ <input type="text"/>
Simplest ratio	<input type="text"/>	<input type="text"/>	<input type="text"/>

Empirical formula of P = C_█H_█O_█

$$\frac{\text{molar mass}}{\text{molecular formula}} = n(\text{Empirical formula})$$

$$\boxed{} = \boxed{}$$

$$n = \boxed{}$$

$$M_f = C_{\square}H_{\square}O_{\square}$$

 LIVEWORKSHEETS