

## WAVES - Introductory Notes

|                         | -a disturbance                | e that transmits energy through space                                                   | ce                                               |
|-------------------------|-------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|
| <ul> <li>Mos</li> </ul> | st waves require a            | (matter through which a                                                                 | wave travels like water or air)                  |
| Two Types               | of Waves                      |                                                                                         |                                                  |
| • Tran                  | nsverse wave-particles of the | medium vibrate                                                                          | to the                                           |
| dire                    | ction of the wave. Examples:  | : wave in water, light wave                                                             |                                                  |
| (                       | o                             | highest point of wave                                                                   |                                                  |
| (                       | o                             | lowest point of wave                                                                    | Particle                                         |
| (                       | 0                             | distance from rest                                                                      | Wave motion                                      |
|                         | position to crest or trough   | ; amount of energy in a wave                                                            |                                                  |
| (                       | 0                             | (λ)-distance between a                                                                  | my two successive identical                      |
|                         | parts of a wave               |                                                                                         |                                                  |
|                         |                               | ne medium vibrate                                                                       |                                                  |
| of th                   | ne wave. Examples: slinky, s  |                                                                                         |                                                  |
| (                       |                               | -part of wave where the coils/                                                          | particles are pressed together                   |
|                         |                               |                                                                                         | 20 B 1550                                        |
| (                       |                               | part of wave where the coi                                                              | ils/particles are spread apart                   |
|                         | 0                             | -part of wave where the con-                                                            | ils/particles are spread apart<br>to compression |
| C                       | 0                             | -part of wave where the coi - distance from compression - distance from the rest positi | ils/particles are spread apart<br>to compression |
| C                       | 0                             | -part of wave where the coi - distance from compression - distance from the rest positi | ils/particles are spread apart<br>to compression |



|       | - the movement o                                                                 | of the energy pulse in a wave                                           |               |
|-------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------|
|       | - the rate at which                                                              | h a wave is propagated, the rate at v                                   | which the     |
| pulse | of energy in a wave moves from one place                                         | to another                                                              |               |
| The s | peed of light waves is                                                           |                                                                         |               |
| The s | peed of sound in air is about                                                    | depending on the ter                                                    | mperature and |
| humic | dity of the air                                                                  |                                                                         |               |
|       |                                                                                  |                                                                         |               |
|       | - the number of co                                                               | mplete waves that pass by a certain                                     | n point in an |
|       | - the number of count of time.                                                   | mplete waves that pass by a certain                                     | n point in an |
|       | 454 F1                                                                           |                                                                         |               |
| amou  | nt of time.                                                                      | r second, the unit is called a                                          | (             |
| amour | nt of time.  When frequency is measured in waves per                             | r second, the unit is called a                                          | (             |
| amour | when frequency is measured in waves per TV screens cycle at 50 or 60 Hz, meaning | r second, the unit is called a<br>g that they refresh their contents 50 | or 60 times   |

## **Universal Wave Equation**

The frequency, wavelength, and speed of waves are related by the equation v =  $f \ast \lambda$