EXPERIMENT 1: MEASUREMENT AND UNCERTAINTY

Course Learning Outcome:

Solve problems related to Physics of motion, force and energy, waves, matter and thermodynamics (C4, PLO 4, CTPS 3, MQF LOD 6)

Learning Outcomes:

At the end of this lesson, students will able to describe technique of measurement and determine uncertainty of length of various objects.

Student Learning Time:

Face-to-face	Non face-to-face
1 hour	1 hour

Direction: Read over the lab manual and then answer the following question.

Introduction

1. Complete Table 1

Basic Quantity	Symbol	SI Unit (with symbol)	Measuring Instrument
Length	l		
Mass	m		
Time	t		
Electric Current	I		
Temperature	T		

Table 1

2.	is used to measure the diameter of a coin.
3.	Micrometer screw gauge is usually used to measure the of a thin wire or the
	of paper.

1

4. Complete Table 2

Measuring Instrument	Uncertainty
Ruler	
	±
ernier calipers	
	±
Micrometer screw gauge	
0-25mm 0-0.01	±

Table 2

5.	State	TWO types of reading;
	i.	

Experiment

6. Complete Table 3

Measurement	Measuring Instrument	Uncertainty/ Smallest scale	Type of reading (single point/two point/vernier scale)
Length of a book		±	
Diameter of a spherical object		±	
Width of a square object		±	

Table 3

7. Determine the reading for the following measurements:

cm		2 3 4 5 6 7 8 9 10	Main scale Vernier scale	
	Main Scale	Vernier Scale	Actual reading	3:
	10 cm	11 cm	Main scale	·
			Vernier scale	:
	0 5	10	Actual reading	:
	7-6	45	Main scale	:
	0	40	Vernier scale	:
		35	Actual reading	:

_
_
E-0
=

Main scale	:
Vernier scale	:
Actual reading	

Data Analysis

8. Complete Table 4

1	2.22	
1	2.50	
2	2.52	
3	2.52	
4	2.50	

Table 4

9. Express your answer as $(\overline{d} \pm \Delta \overline{d})$

10. Calculate the percentage of uncertainty.

$$\frac{\Delta \overline{d}}{d} \times =$$

11. For the precautionary steps below, fill in the blank with the most appropriate word:

zero accuracy parallel instrument perpendicular

- a) Check the _____ error before taking data.
- b) Use appropriate _____ for each measurement.
- c) Check the _____ of the instrument before taking data.
- d) Keep the ruler ______ to the edge of the book when taking the reading.
- e) Make sure the observer's eye _____ to the scale before taking the reading (data).