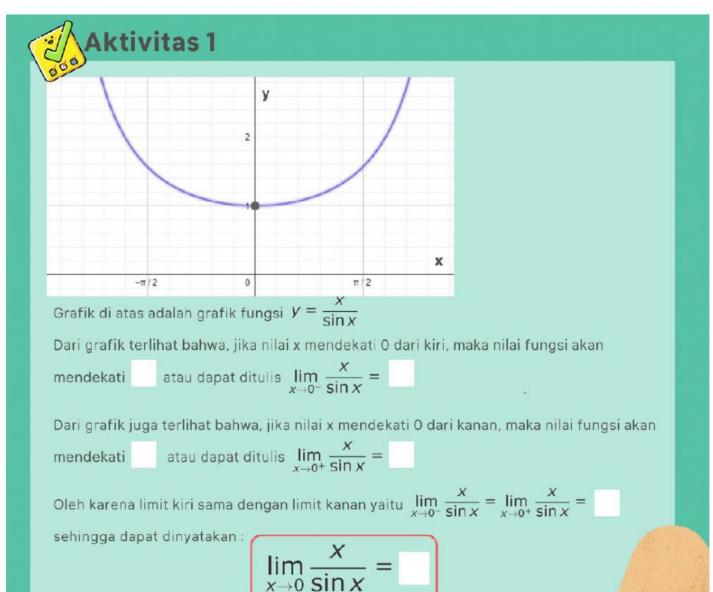
Lembar Kerja Peserta Didik (Sifat-Sifat Limit Fungsi Trigonometri

13.13.	Nama / No Absen	
ompok :	Anggota 1:	
	Anggota 2 :	
	Anggota 3:	
	Anggota 4 :	

Tujuan Pembelajaran:

Ke

- · menentukan sifat-sifat limit fungsi trigonometri di suatu titik
- · menyelesaikan masalah terkait sifat-sifat limit fungsi trigonometri di suatu titik



SIFAT 1 Dengan langkah yang sama dengan Aktivitas 1, maka sifat-sifat dasar dari limit fungsi trigonometri yaitu :

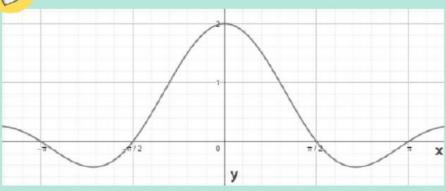
$$\lim_{x\to 0} \frac{x}{\sin x} =$$

$$\lim_{x \to 0} \frac{x}{\sin x} = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{\tan x} = \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\tan x}{x}$$

$$\lim_{x\to 0}\frac{x}{\tan x}=$$

$$\lim_{x\to 0} \frac{\tan x}{x} =$$

Aktivitas 2



Grafik di atas adalah grafik fungsi $y = \frac{\sin 2x}{x}$

Dari grafik terlihat bahwa, jika nilai x mendekati 0 dari kiri, maka nilai fungsi akan

mendekati

atau dapat ditulis
$$\lim_{x\to 0^-} \frac{\sin 2x}{x} =$$

Dari grafik juga terlihat bahwa, jika nilai x mendekati 0 dari kanan, maka nilai fungsi akan

mendekati

atau dapat ditulis
$$\lim_{x\to 0^+} \frac{\sin 2x}{x} =$$

Oleh karena limit kiri sama dengan limit kanan yaitu $\lim_{x\to 0^-} \frac{\sin 2x}{x} = \lim_{x\to 0^+} \frac{\sin 2x}{x} = \lim_{x\to 0^+} \frac{\sin 2x}{x}$ sehingga dapat dinyatakan : $\lim_{x\to 0} \frac{\sin 2x}{x} =$

Mari kita coba dengan perhitungan aljabar!

$$\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \left(\frac{\sin 2x}{x}, \frac{2}{2}\right)$$

$$= \lim_{x \to 0} \left(\frac{2 \cdot \sin 2x}{2 \cdot x}\right)$$

$$= \lim_{x \to 0} 2 \cdot \lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)$$

$$= \lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)$$

$$= \lim_{x \to 0} \left(\frac{\sin 2x}{2x}\right)$$

Misalkan u = 2x, untuk nilai $x \to 0$ maka nilai $2x \to 0$ atau $u \to 0$, sehingga:

$$= 2. \lim_{u \to 0} \left(\frac{\sin u}{u}\right)$$

$$= 2.$$
 (Gunakan Sifat 1)

Dengan langkah yang sama dengan Aktivitas 2, maka sifat-sifat dasar dari limit fungsi trigonometri yaitu :

$$\lim_{x\to 0}(\frac{\sin ax}{bx})=\lim_{x\to 0}(\frac{ax}{\sin bx})=--\lim_{x\to 0}(\frac{\tan ax}{bx})=\lim_{x\to 0}(\frac{ax}{\tan bx})=--$$

Aktivitas 3

Tentukan nilai limit $\lim_{x\to 0} (\frac{\sin x}{\sin 2x})$ dengan memanfaatkan Sifat 1 dan Sifat 2

Jawab:

$$\lim_{x \to 0} \left(\frac{\sin x}{\sin 2x} \right) = \lim_{x \to 0} \left(\frac{\sin x}{\sin 2x} \cdot \frac{2x}{2x} \right)$$

$$= \lim_{x \to 0} \left(\frac{2x \cdot \sin x}{2x \cdot \sin 2x} \right)$$

$$= \lim_{x \to 0} \left(\frac{2x}{\sin 2x} \cdot \frac{\sin x}{x} \cdot \frac{1}{x} \cdot \frac{1}{x$$

Sehingga,

$$\lim_{x\to 0} (\frac{\sin x}{\sin 2x}) = --$$

Dengan langkah yang sama dengan Aktivitas 3, maka sifat-sifat dasar dari limit fungsi trigonometri yaitu :

$$\lim_{x \to 0} (\frac{\sin ax}{\sin bx}) = \lim_{x \to 0} (\frac{\tan ax}{\tan bx}) = \underline{\hspace{1cm}}$$

$$\lim_{x\to 0} (\frac{\sin ax}{\tan bx}) = \lim_{x\to 0} (\frac{\tan ax}{\sin bx}) = --$$