

Name: _____ Date: _____

GLAT (computation)

Use your math book to show your working.

Add

$$1. \begin{array}{r} 354 \\ + 213 \\ \hline \end{array}$$

$$2. \begin{array}{r} 4,863 \\ + 3,128 \\ \hline \end{array}$$

$$3. \begin{array}{r} \$52.98 \\ + \$2.26 \\ \hline \end{array}$$

$$4. 2,436 + 5,408 = \boxed{}$$

$$\begin{array}{r} \boxed{}, \boxed{}, \boxed{}, \boxed{} \\ + \boxed{}, \boxed{}, \boxed{}, \boxed{} \\ \hline \boxed{}, \boxed{}, \boxed{}, \boxed{} \end{array}$$

Subtract

$$5. \begin{array}{r} 649 \\ - 245 \\ \hline \end{array}$$

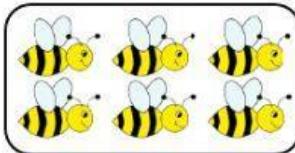
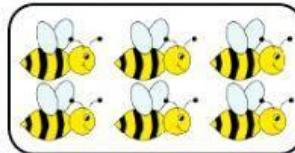
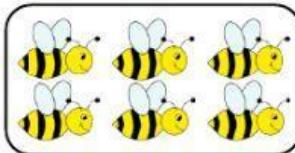
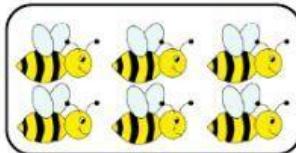
$$6. \begin{array}{r} 852 \\ - 518 \\ \hline \end{array}$$

$$7. 9,463 - 5,182 = \boxed{}$$

$$\begin{array}{r} \boxed{}, \boxed{}, \boxed{}, \boxed{} \\ - \boxed{}, \boxed{}, \boxed{}, \boxed{} \\ \hline \boxed{}, \boxed{}, \boxed{}, \boxed{} \end{array}$$

$$8. \begin{array}{r} \$50.55 \\ - \$29.89 \\ \hline \end{array}$$

Multiply





9.
$$\begin{array}{r} 526 \\ \times 5 \\ \hline \end{array}$$

10.
$$\begin{array}{r} 4,783 \\ \times 3 \\ \hline \end{array}$$

11.
$$\begin{array}{r} 9,233 \\ \times 2 \\ \hline \end{array}$$

12. $2,300 \times 7 = \boxed{}$

$$\begin{array}{r} \boxed{}, \boxed{}, \boxed{}, \boxed{} \\ \times \quad \quad \quad \boxed{} \\ \hline \boxed{}, \boxed{}, \boxed{}, \boxed{} \end{array}$$

13. Write the **repeated addition sentence** that is represented by the model above.

Answer: _____ + _____ + _____ + _____ = _____

14. Write the **multiplication sentence** that is represented by the array above.

Answer: _____ \times _____ = _____