

The Gas Laws

Boyle's law involves initial pressure (P_1) and initial volume (V_1), as well as final pressure (P_2) and final volume (V_2) at constant temperature. In equation form, the relationship is expressed as

$$\frac{P_1}{P_2} = \frac{V_2}{V_1} \quad \text{or} \quad P_1 V_1 = P_2 V_2$$

Apply this concept to the following problem.

A liter (1000 cm³) of gas is under a pressure of 80.00 cm of mercury. What pressure is needed in order to reduce the original volume of the gas to 600.0 cm³?

What is the initial/beginning pressure P_1

What is the final/ending pressure P_2 ?

What is the initial/beginning volume V_1

What is the final/ending volume V_2

Now substitute the variables (one of them is unknown) cross multiply and divide.

$$\frac{P_1}{P_2} = \frac{V_2}{V_1}$$

answer
2 decimals

Charles's law involves initial volume (V_1) and initial temperature (T_1), as well as final volume (V_2) and final temperature (T_2) at constant pressure. Temperature is expressed in degrees Kelvin (°K). Kelvin is a temperature scale also known as the Absolute scale. In the equation form, the relationship is expressed as:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \quad \text{or} \quad V_1 T_2 = V_2 T_1$$

Apply this concept to the following problem.

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

answer
2 decimals

At 275 °K, an air-filled balloon has a volume of 200 liters. If the pressure of the air remains constant, what will its volume be at 300°K?

What is the initial/beginning volume V_1

What is the initial/beginning temperature T_1

What is the final/ending volume V_2 ?

What is the final/ending temperature T_2

Substitute the variables (one of them is unknown) cross multiply and divide.

A tube has gas within it the volume of the gas is 250 liters the temperature is 300°K. If the pressure of the gas is kept constant, what will the temperature be if the gas volume is increased by 50 liters?

What is the initial/beginning volume V_1

What is the initial/beginning temperature T_1

What is the final/ending volume V_2

What is the final/ending temperature T_2 ?

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

answer
no decimals

Substitute the variables (one of them is unknown) cross multiply and divide.