Kinetic Theory

Directions: Look carefully at the graph. It was drawn from the data collected when a substance was heated at a constant rate. To heat at a constant rate means to add heat evenly as time passes. Use the graph to complete the paragraphs that follow.

At the start of observation	ons, Point A, the substance ex	tists in the 1.
state. The temperature at this point is 2.		As energy is absorbed, the
temperature of the substan	ce rises at a constant rate for	two minutes. At Point B, the temperature
is 3	, and the solid begins to 4 The	
temperature remains const	ant until the change from so	lid to 5 is
complete. It has taken three	e minutes to add enough ene	ergy to melt the solid completely. From
Point C to Point D, the sub	stance is in the 6.	state. Its temperature rises
at a constant rate to 7.	The te	mperature remains constant while the
liquid changes to a 8	. At Point E, the substance exists as a	
9	. Its temperature rises evenly	as energy is added.
When the gaseous substa	ance is allowed to cool, it rele	eases energy. The cooling curve will
be the reverse of the warmi	ing curve. Energy will be rele	ased as the substance changes
from a 10.	to a 11	and also from
a 12	to a 13	The amount of energy released
during condensation will b	e the same as the amount ab	sorbed during vaporization

