Strategy for factoring polynomials:

- Step 1. <u>GCF</u>: If the polynomial has a greatest common factor other than 1, then factor out the greatest common factor.
- Step 2. <u>Binomials</u>: If the polynomial has two terms (it is a binomial), then see if it is the *difference* of two squares: $(a^2 b^2)$.

Remember if it is the sum of two squares, it will NOT factor.

- Step 3. <u>Trinomials</u>: If the polynomial is a trinomial, then check to see if it is a perfect square trinomial which will factor into the square of a binomial: $(a+b)^2 or (a-b)^2$.
 - If it is not a perfect square trinomial, use factoring by trial and error or the AC method.

Instructor: C. St.Denis

- **Strategy for factoring** $ax^2 + bx + c$ by grouping (AC method):
 - a. Form the product ac
 - b. Find a pair of numbers whose product is ac and whose sum is b.
 - c. Rewrite the polynomial so that the middle term (bx) is written as the sum of two terms whose coefficients are the two numbers found in step 2.
 - d. Factor by Grouping (as in step 4)
- Step 4. Other polynomials: If it has more than three terms, try to factor it by grouping.
 - a. Group two terms together which can be factored further
 - b. Use the distributive property in reverse to factor out common terms
 - c. Write the factors as multiplication of binomials.
- Step 5. <u>Final check</u>: See if any of the factors you have written can be factored further. If you have overlooked a common factor, you can catch it here.

Remember the following pro	perties:
Perfect Squares:	$(a+b)^2 = a^2 + 2ab + b^2$ and
	$(a-b)^2 = a^2 - 2ab + b^2$
Difference of two squares:	$a^2 - b^2 = (a - b)(a + b)$
Sum of two squares:	$a^2 + b^2$ is NOT factorable

Factoring, among other benefits, helps us simplify division of polynomials such as:

$$\frac{x^2-4}{x-2}$$

Instead of trying to do the long division, let's see if we can factor the numerator so we can cancel some things out:

$$\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{(x - 2)} = x + 2$$

Page 1 of 4

MAT 0024	Ch 13 Factoring Review Worksheet Instructor: C. St.Denis Description of steps:
Example:	
$2x^5 - 8x^3 =$	Step 1: Factor out greatest common factor $(2x^3)$
	Step 2: Determine if the remaining binomial is the difference of
$2x^3(x^2-4)^4=$	two squares Step 2: It is the difference of two squares
	(skip steps 3-4)
$2x^{3}(x+2)(x-2)$ $3x^{4}-18x^{3}+27x^{2}=$	Step 5: Can it be factored further? No
$3x^4 - 18x^3 + 27x^2 =$ $3x^2(x^2 - 6x + 9)$	Step 1: Factor out greatest common factor $(3x^2)$
	Step 2: Determine if the remaining binomial is the difference of
	two squares: NOT binomial.
$3x^{2}(x^{2}-6x+9)$	Step 3: Determine if the remaining trinomial is a perfect square:
	It seems to be $(x-3)^2$
$3x^{2}(x-3)^{2}$	Step 5: Can it be factored further? No
$6a^2 - 11a + 4 =$	Step 1: no GCF
	Step 2: Not a binomial
	Step 3: Not a perfect square; factor by AC method (or trial &
$6a^2 - 3a - 8a + 4 =$	error).
	a. Find the product of ac (24).
$(6a^2 - 3a) + (-8a + 4)$	b. Find two numbers whose product is ac (24) and whose
	sum is b (-11). The two numbers are -8 and -3.
	c. Rewrite the trinomial so the middle term is the sum of
3a(2a-1)+(-4)(2a-1) =	the two numbers found as coefficients.
	Step 4: Factor by grouping.
(3a-4)(2a-1)	Step 5: Cannot be factored further.
xy + 8x + 3y + 24 = $(xy + 8x) + (3y + 24) =$	Skip steps 1-3.
	Step 4: Factor by grouping
	a. group two terms together
	b. find GCF of each group
	c. Use distributive property to "pull out" the common
x(y+8) + 3(y+8) =	term.
	d. Rewrite as product of two binomials
(x+3)(y+8)	Step 5: Cannot be factored further
$2ab^5 + 8ab^4 + 2ab^3 =$	Step 1: Find GCF (2ab³)
	Skip step 2 (not a binomial remaining)
4	Step 3-4: Not a perfect square and can't be factored.
$2ab^3(b^2+4b+1)$	Step 5: Cannot be factored further.
$x^2 + 5x + 6 =$	Skip steps 1-2
(x+3)(x+2)	Step 3: Not a perfect square, coefficient of first term is 1, so just
(A F 5)(A T 2)	reverse FOIL:
	a. First two terms are x and x
	b. Last two terms have to multiply to be 6 and sum to be
	5. The two numbers are 2 and 3.
	c. Both signs need to be positive
	Step 4: Check the OI term to make sure it's correct. It is.

MAT 0024 Ch 13 Factoring Review Worksheet Factor the following polynomials using the strategy and examples above:

Polynomial:	Factored form:
$12a^2b^2 - 3ab$	
$4x^2 - 9$	
$x^2 - 16y^2$	
$x^2 - 4x + 2xy - 8y$	
$x^2 - 9x + 20$	
$9x^2 - 12x + 4$	
$8x^3 - x^2$	
$x^2 + 49$	
$16x^3 + 16x^2 + 3x$	
$x^2 - 9x + 18$	
$6x^2 + 13x + 6$	