

Learning Target: I can read passages about the practical applications of the electromagnetic spectrum and then use the information gathered to answer comprehension questions.

FSI 8th Grade Science Reading for Meaning – Practical Applications of The Electromagnetic Spectrum

Every day, humans use invisible waves that travel through space at the speed of light. These waves—collectively known as the **electromagnetic spectrum (EMS)**—make modern life possible. From the phone in your pocket to the X-ray machine in a hospital, each part of the spectrum has a purpose based on **wavelength and energy**.

Communication Devices: At one end of the spectrum, **radio waves** have the longest wavelength and lowest energy. They are used to send information through the air without wires. Cell phones, Wi-Fi routers, and satellites rely on radio and **microwave** radiation to transmit data. Engineers must design antennas that match the wavelength of the wave being used. For example, shorter microwaves can carry more data but require line-of-sight transmission.

Medical Technology: Moving toward shorter wavelengths and higher energy, **infrared** and **visible light** are used in medical sensors and imaging. Infrared thermometers detect heat energy from a patient's skin, while lasers made of visible light perform precise eye surgeries. Even higher energy **X-rays** can penetrate soft tissue to create images of bones. However, because X-rays can damage cells, medical engineers design machines with shielding and controlled doses to keep patients safe.

Military and Security Applications: In defense systems, different bands of the EMS are used for both detection and communication. **Radar** uses microwaves to locate objects by bouncing waves off targets and analyzing reflections. **Infrared cameras** detect hidden enemies by sensing heat. **Gamma rays**, which have the shortest wavelength and highest energy, can even sterilize equipment or detect radioactive materials from a distance.

Design Challenge: Imagine you are an engineer tasked with creating a device that uses electromagnetic waves to solve a real-world problem. Your design must specify:

1. Which part of the electromagnetic spectrum it will use,
2. The purpose of the device, and
3. How it ensures safety and efficiency.

For instance, a disaster-response drone could use **infrared sensors** to find trapped survivors by detecting their body heat through debris. Or a **microwave-based communication beacon** could send signals across long distances in remote areas where cell towers are down.

Engineers must balance **wavelength, energy, and purpose**—too little energy and the signal won't work; too much and it could harm living tissue or interfere with other technologies. Designing with the electromagnetic spectrum means transforming invisible waves into powerful tools that connect, heal, and protect humanity.

Learning Target: I can read passages about the practical applications of the electromagnetic spectrum and then use the information gathered to answer comprehension questions.

DOK 3–4 Multiple-Choice Questions

1. An engineer wants to design a medical imaging device that produces detailed images of soft tissue without exposing patients to harmful radiation. Which part of the electromagnetic spectrum should they explore using? (DOK 3)

A. Gamma rays B. X-rays C. Infrared waves D. Ultraviolet waves

2. A communication engineer needs to send high-speed data between two mountain bases with no physical cables. Which factor would most influence their choice of electromagnetic waves? (DOK 3)

A. The ability of the wave to reflect off clouds
B. The wavelength and line-of-sight transmission needs
C. The wave's color in the visible spectrum
D. The strength of gravity in the region

3. Which design decision would best illustrate a trade-off between safety and performance in using electromagnetic waves? (DOK 4)

A. Increasing the power of an X-ray beam to improve image clarity
B. Using radio waves to send emergency messages
C. Adjusting antenna length for better reception
D. Using visible light for nighttime communication

4. A student designs a device that detects body heat during nighttime rescue missions. Which concept explains why this works? (DOK 3)

A. Infrared waves have longer wavelengths and carry thermal energy.
B. Visible light travels faster than sound.
C. Microwaves are absorbed by human tissue.
D. Gamma rays reflect off metals.

5. Why would engineers use gamma rays to sterilize surgical tools instead of ultraviolet light? (DOK 3)

A. Gamma rays are visible to the human eye.
B. Gamma rays have higher energy and can kill more bacteria.
C. Ultraviolet light travels slower than gamma rays.
D. Gamma rays are absorbed by air molecules.

6. Suppose you are designing a new type of radar system for airport safety. Which property of electromagnetic waves would you need to analyze most closely? (DOK 3)

A. Reflection and wavelength B. Refraction and density
C. Absorption and color D. Conduction and polarity

Learning Target: I can read passages about the practical applications of the electromagnetic spectrum and then use the information gathered to answer comprehension questions.

7. A disaster-response drone uses both radio waves and infrared waves. Which statement best explains why? (DOK 3)

- A. Radio waves detect heat, and infrared waves send signals.
- B. Infrared waves locate heat sources, and radio waves transmit data to rescuers.
- C. Both waves are harmful and need shielding.
- D. The waves combine to form X-rays.

8. A researcher compares microwave ovens and Wi-Fi routers. Both use similar frequencies but for different purposes. What design difference allows them to work safely together? (DOK 4)

- A. Microwaves operate in vacuum conditions.
- B. Ovens are shielded to contain radiation, while routers broadcast at lower power.
- C. Wi-Fi routers emit gamma rays for communication.
- D. Microwave ovens transmit visible light through walls.

9. A student proposes using ultraviolet radiation for wireless communication. Which is the strongest scientific argument against this design? (DOK 3)

- A. Ultraviolet radiation has too short a wavelength to carry energy.
- B. Ultraviolet radiation is harmful to living cells and absorbed by the atmosphere.
- C. Ultraviolet radiation is slower than radio waves.
- D. Ultraviolet radiation does not reflect off surfaces.

10. You are an engineer developing a new emergency communication beacon. Which steps best demonstrate a DOK 4-level design approach using electromagnetic waves? (DOK 4)

- A. Describing what radio waves are and listing devices that use them
- B. Selecting a wave type, explaining why it's effective, and justifying design trade-offs for distance and safety
- C. Matching wavelengths to their correct spectrum regions
- D. Memorizing the order of the electromagnetic spectrum