

Learning Target: I can read passages about the similarities and differences between electromagnetic and mechanical waves and then use the information gathered to answer comprehension questions.

FSI 8th Grade Science Reading for Meaning – Electromagnetic vs. Mechanical waves

"The Two Travelers: Mechanical and Electromagnetic Waves"

Imagine two invisible travelers racing across the universe — **Mechanical Waves** and **Electromagnetic Waves**. Both carry energy from one place to another, but the way they travel and what they need to move are very different.

Mechanical waves are like marathon runners who must stay on the ground to move forward. They **require a medium** — a substance such as air, water, or solid rock — to transmit their energy. Without this medium, mechanical waves can't travel. Sound is a common example. When someone claps their hands, the air particles vibrate and pass energy to nearby particles, creating a **longitudinal wave** that your ears detect as sound. Similarly, ocean waves move through water, transferring energy but not permanently moving the water itself.

Electromagnetic waves, on the other hand, are the ultimate solo travelers. They **do not require a medium** and can move through the vacuum of space. Light from the Sun, radio waves from satellites, and X-rays at a hospital all belong to this category. These waves are made of **oscillating electric and magnetic fields** that move perpendicular to each other and to the direction the wave travels — a **transverse wave** pattern.

Interestingly, both types of waves share certain characteristics: they have **wavelength, frequency, and amplitude**. Increasing the amplitude in either type increases the wave's energy. But the **speed** of each wave depends on what it's traveling through. Sound moves faster in solids than in gases because the particles are closer together, while light slows down in denser materials like water or glass.

One key difference lies in how they transfer energy. Mechanical waves move **energy through particle interaction**, while electromagnetic waves transfer **energy through changing electric and magnetic fields**. That's why you can hear a thunderclap only after seeing lightning — sound (mechanical) needs air particles to move, but light (electromagnetic) arrives almost instantly from space.

Understanding these differences helps scientists design technologies — from **seismographs** that detect mechanical vibrations in Earth's crust to **radio telescopes** that capture electromagnetic signals from distant galaxies. In both cases, waves are the messengers of energy, carrying vital information about our world and beyond.

DOK 3–4 Multiple Choice Questions

1. Which statement best explains why astronauts on the Moon can see an explosion but not hear it? (DOK 3)

- A. The explosion produces only electromagnetic waves, not mechanical ones.
- B. Mechanical waves require a medium, and space lacks one.
- C. Electromagnetic waves move slower in space than sound.
- D. Sound waves are absorbed by the Moon's surface.

Learning Target: I can read passages about the similarities and differences between electromagnetic and mechanical waves and then use the information gathered to answer comprehension questions.

2. A scientist observes that sound waves travel faster through steel than through air. What conclusion can she make about the relationship between medium and wave speed? (DOK 3)

- A. Mechanical waves move faster in less dense materials.
- B. Mechanical wave speed increases as particle spacing decreases.
- C. Mechanical waves require fewer particles to move energy.
- D. Sound waves are electromagnetic in solids.

3. A student places a ringing alarm clock inside a sealed vacuum chamber and slowly removes the air. The sound fades away, but the clock's light remains visible. What does this experiment demonstrate? (DOK 4)

- A. Both light and sound need a medium.
- B. Only electromagnetic waves can move through a vacuum.
- C. Mechanical waves travel faster in vacuums.
- D. Sound energy converts to light energy in a vacuum.

4. Which property is shared by both electromagnetic and mechanical waves? (DOK 3)

- A. Both require a medium.
- B. Both carry matter.
- C. Both transfer energy.
- D. Both are longitudinal waves.

5. Which scenario best illustrates the interaction of a mechanical wave with matter? (DOK 3)

- A. A mirror reflecting sunlight.
- B. A radio antenna transmitting a signal.
- C. A string vibrating to produce sound.
- D. A microwave heating food.

6. Light slows down when passing from air into water. What inference can be made about electromagnetic waves from this observation? (DOK 3)

- A. The waves need denser materials to travel faster.
- B. Electromagnetic waves are affected by the optical density of a medium.
- C. The frequency of the wave decreases in water.
- D. Light energy turns into sound energy in water.

7. A seismograph detects both primary (P) and secondary (S) waves from an earthquake. What do these observations reveal about mechanical waves? (DOK 4)

- A. Mechanical waves cannot move through solids.
- B. Different types of mechanical waves can move through Earth's layers in different ways.
- C. Mechanical waves can travel through a vacuum.
- D. Mechanical waves and electromagnetic waves behave identically underground.

Learning Target: I can read passages about the similarities and differences between electromagnetic and mechanical waves and then use the information gathered to answer comprehension questions.

8. A student claims that because both sound and light waves carry energy, they must travel in the same way. How should another student respond to correct this misconception? (DOK 3)

- A. Agree, because energy transfer always needs a medium.
- B. Disagree, because sound needs matter to vibrate while light does not.
- C. Agree, because both use electric and magnetic fields.
- D. Disagree, because both waves move at the same speed.

9. Engineers designing a new communication satellite must choose wave types to send signals through space. Which reasoning best supports their decision to use electromagnetic waves? (DOK 4)

- A. Electromagnetic waves are slower but stronger than sound waves.
- B. Electromagnetic waves can travel through the vacuum of space, while mechanical waves cannot.
- C. Mechanical waves travel farther through space because of their frequency.
- D. Mechanical waves lose less energy over distance.

10. How does understanding the difference between mechanical and electromagnetic waves help scientists study distant stars? (DOK 4)

- A. It allows them to measure temperature using sound vibrations from space.
- B. It helps them interpret light and radio waves that can travel through space without a medium.
- C. It ensures that telescopes detect both sound and light waves.
- D. It explains why mechanical vibrations from stars reach Earth faster than light.