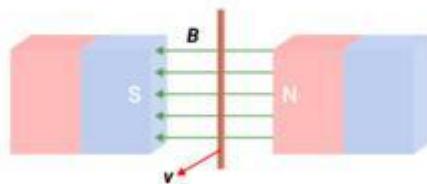
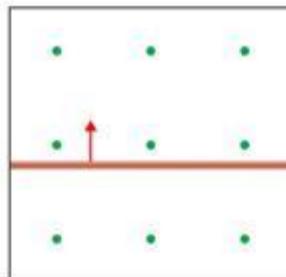

Which way would current flow in the wire?


Direction of current:


Direction of current:

Direction of current:

Direction of current:

$$\text{EMF} = 1.5\text{V}$$
$$R = 0.75\Omega$$

Direction of current:

Magnitude of current:

B	$7.5 \times 10^{-2} \text{ T}$
L	0.25 m
v	4.5 m/s
θ	90°
EMF	?

EMF =

A magnet with a field strength of 2.5 mT is moved perpendicular to a 75 cm coil of wire at a speed of 3.5 m/s. Assume that the field is uniform and moving perpendicular to the wire. The induced EMF in the wire is:

If the maximum current of a water kettle is 1.2 A. Then the value of the effective current of the kettle is equal to: