

Properties of Rational Numbers

Distributive property of multiplication: For, any three rational numbers $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$, the distributive property is

$$\frac{a}{b} \times \left(\frac{c}{d} + \frac{e}{f} \right) = \left(\frac{a}{b} \times \frac{c}{d} \right) + \left(\frac{a}{b} \times \frac{e}{f} \right)$$

1) Which of the following demonstrates the distributive property of multiplication over addition for any three rational numbers $\frac{p}{q}$, $\frac{r}{s}$, and $\frac{t}{v}$?

a) $\frac{p}{q} \times \left(\frac{r}{s} + \frac{t}{v} \right) = \left(\frac{p}{q} + \frac{r}{s} \right) \times \left(\frac{p}{q} + \frac{t}{v} \right)$

b) $\frac{p}{q} + \left(\frac{r}{s} \times \frac{t}{v} \right) = \left(\frac{p}{q} + \frac{r}{s} \right) \times \frac{t}{v}$

c) $\frac{p}{q} \times \left(\frac{r}{s} + \frac{t}{v} \right) = \left(\frac{p}{q} \times \frac{r}{s} \right) + \left(\frac{p}{q} \times \frac{t}{v} \right)$

d) $\frac{p}{q} \times \left(\frac{r}{s} \times \frac{t}{v} \right) = \left(\frac{p}{q} \times \frac{r}{s} \right) \times \frac{t}{v}$

2) Which expression demonstrates the distributive property of multiplication for rational numbers $\frac{-2}{3}$, $\frac{5}{9}$ and $\frac{8}{11}$?

a) $-\frac{2}{3} \times \left(\frac{1}{9} + \frac{7}{11} \right) = \left(-\frac{2}{3} + \frac{1}{9} \right) \times \left(-\frac{2}{3} + \frac{7}{11} \right)$

b) $\left(\frac{-2}{3} \times \frac{1}{9} \right) + \frac{7}{11} = \left(\frac{-2}{3} \right) + \left(\frac{1}{9} \times \frac{7}{11} \right)$

c) $\left(\frac{-2}{3} + \frac{1}{9} \right) \times \frac{7}{11} = \frac{-2}{3} \times \left(\frac{1}{9} + \frac{7}{11} \right)$

d) $\frac{-2}{3} \times \left(\frac{1}{9} + \frac{7}{11} \right) = \left(\frac{-2}{3} \times \frac{1}{9} \right) + \left(\frac{-2}{3} \times \frac{7}{11} \right)$

3) Identify the properties illustrated by the following

a) $\left(\frac{-5}{8} \times \frac{-1}{9}\right) = \left(\frac{-1}{9} \times \frac{-5}{8}\right) = \text{_____}$

b) $\frac{1}{2} \times \left(\frac{-1}{3} + \frac{4}{5}\right) = \left(\frac{1}{2} \times \frac{-1}{3}\right) + \left(\frac{1}{2} \times \frac{4}{5}\right) = \text{_____}$

c) $\frac{p}{q} + \left(\frac{r}{s} + \frac{t}{v}\right) = \left(\frac{p}{q} + \frac{r}{s}\right) + \frac{t}{v} = \text{_____}$

d) $\frac{-7}{5} \times 1 = \frac{-7}{5} = \text{_____}$

e) $\frac{-3}{2} + \frac{3}{2} = 0 = \text{_____}$

f) $\frac{6}{7} - 0 = \frac{6}{7} = \text{_____}$

g) $\left(\frac{1}{3} \times \frac{1}{10}\right) = \frac{1}{30} = \text{_____}$

4) The product of a rational number and its reciprocal is _____

5) Zero has no reciprocal a) yes b) no

6) The subtraction of rational numbers follows commutative

property and associative property. a) yes b) no

7) $\frac{4}{9} \div \left(\frac{4}{9}\right) = \frac{4}{9} \times \frac{9}{4} = ?$ a) 1 b) $\frac{-4}{9}$ c) 0 d) $\frac{4}{9}$

8) Division follows closure property, for every non-zero rational

number $\frac{c}{d}$, $\left(\frac{a}{b} \div \frac{c}{d}\right)$ is closed. a) yes b) no

9) The numbers ___ and ___ are their own reciprocals

a) $\frac{a}{b}, 1$ b) $\frac{a}{b}, \frac{-a}{b}$ c) 0, $\frac{a}{b}$ d) $\frac{a}{b}, \frac{b}{a}$