

Properties of Rational Numbers

1) Two rational numbers can be _____ in any order, and yet their _____ remains the same.

2) If $a = \frac{3}{4}$ and $b = \frac{5}{6}$, then which of the following is **true** for the *commutative property*?

a) $a + b = b - a$ c) $a + b = b + a$
b) $a + b = b - a$ d) $a - b = b - a$

3) Two rational numbers can be _____ in any order, and yet their _____ remains the same.

4) If a and b are integers, which of the following demonstrates the *commutative property of multiplication* for rational numbers $\frac{a}{b}$ and $\frac{c}{d}$?

a) $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} - \frac{a}{b}$ c) $\frac{a}{b} - \frac{c}{d} = \frac{c}{d} - \frac{a}{b}$
b) $\frac{a}{b} \div \frac{c}{d} = \frac{c}{d} \div \frac{a}{b}$ d) $\frac{a}{b} \times \frac{c}{d} = \frac{c}{d} \times \frac{a}{b}$

5) Which of the following operations is **not** commutative for rational numbers?

a) Addition b) Subtraction c) Multiplication d) both a and c

6) Which expression demonstrates the commutative property of addition for rational numbers $\frac{2}{3}$ and $\frac{3}{4}$?

a) $\frac{2}{3} + \frac{3}{4} = \frac{3}{4} + \frac{2}{3}$

b) $\frac{2}{3} - \frac{3}{4} = \frac{3}{4} - \frac{2}{3}$

c) $\frac{2}{3} + \frac{3}{4} = \frac{3}{4} - \frac{2}{3}$

d) $\frac{2}{3} - \frac{3}{4} = \frac{3}{4} + \frac{2}{3}$

7) Which expression demonstrates the commutative property of multiplication for rational numbers $\frac{-2}{3}$ and $\frac{5}{7}$?

a) $\frac{-2}{3} \times \frac{5}{7} = \frac{5}{7} \div \frac{-2}{3}$

b) $\frac{-2}{3} \times \frac{5}{7} = \frac{5}{7} \times \frac{-2}{3}$

c) $\frac{-2}{3} \div \frac{5}{7} = \frac{5}{7} \times \frac{-2}{3}$

d) $\frac{-2}{3} \div \frac{5}{7} = \frac{5}{7} \div \frac{-2}{3}$

8) The sum of any rational number and 0 is the _____ itself.

Thus, $\frac{a}{b} + 0 = 0 + \frac{a}{b} = \frac{a}{b}$.

9) The **additive identity** for every rational number is _____

10) $\frac{13}{11} + 0 = \text{_____}$ a) $0 + \frac{13}{11}$ b) $\frac{13}{11}$ c) $\frac{11}{13}$ d) both a and b

11) The product of any rational number and 1 is the _____

itself. Thus, $\frac{a}{b} \times 1 = 1 \times \frac{a}{b} = \frac{a}{b}$.

12) The **multiplicative identity** for every rational number is _____

13) $\frac{-9}{17} \times 1 = \dots$ a) $1 \times \frac{-9}{17}$ b) $\frac{-9}{17}$ c) $\frac{17}{-9}$ d) both a and b

14) **Zero property of multiplication:** The product of any rational number and 0 is the _____. Thus, $\frac{a}{b} \times 0 = 0 \times \frac{a}{b} = 0$.

15) $\frac{3}{5} \times 0 = \dots$ a) $0 \times \frac{3}{5}$ b) $\frac{3}{5}$ c) 0 d) both a and c

16) Match the following

a) $\frac{4}{7} \times 0 = \dots$ $-\frac{1}{8}$

b) $\frac{7}{15} = \dots$ 0

c) $\frac{-1}{8} + 0 = \dots$ additive identity

d) Multiplicative identity $\frac{7}{15} \times 1 = \dots$

e) 0 \dots 1