

Worksheet C: Make Special Number Sequences

1. Find the values of each of the following.

(a) $4^2 = \underline{\hspace{2cm}}$

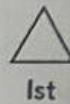
$4^2 = 4 \cdot 4$

(b) $3^2 = \underline{\hspace{2cm}}$

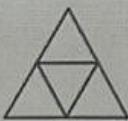
(c) $5^2 = \underline{\hspace{2cm}}$

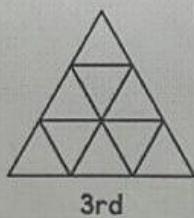

(d) $7^2 = \underline{\hspace{2cm}}$

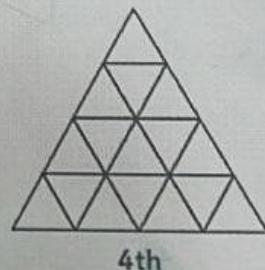
2. Circle the square numbers.


A square number is made by multiplying the number by itself.

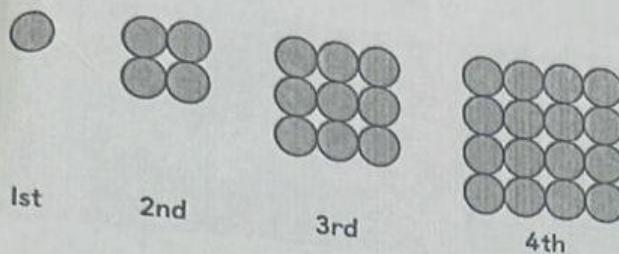
17 25 38 36 64 66 88


81 1 55 16 9 2 100


3. Complete the sequence.

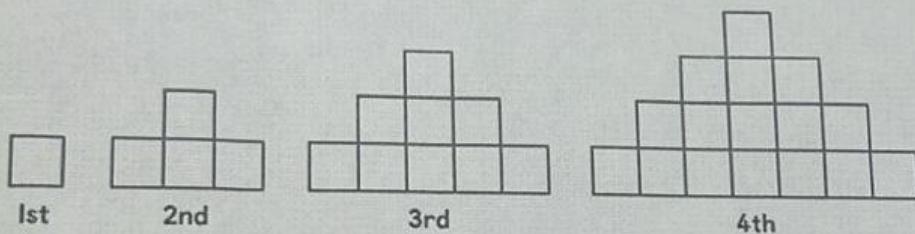

1st

2nd


3rd

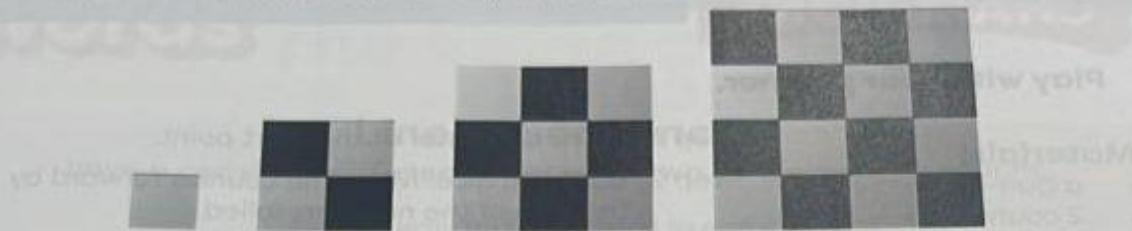
4th

1st term	2nd term	3rd term	4th term	5th term	6th term
1	4	9			


Look at the pattern below.

Complete the sequence.

1st term	2nd term	3rd term	4th term	5th term	6th term
1	4				


5. Look at the pattern below.

(a) Complete the sequence.

1st term	2nd term	3rd term	4th term	5th term	6th term
1	4				

6 Ralph looks at the chessboard pattern below.

He records the size of each term and the number of squares he sees in the table below.

Size of chessboard	1×1	2×2	3×3	4×4	5×5	6×6
Number of squares	1	5	14	30		

a Complete the table. How did you do it?

 b What pattern do you notice between the size of the chessboard and the total number of squares?

Make a generalisation about the number of squares on any chessboards.

Tick (✓) to show what you can do.

I can recognise square numbers from 1 to 100.

I can recognise and extend spatial patterns of squares and triangular numbers.