

CHAPTER 9 REVIEW

Stoichiometry**SECTION 1: Introduction to Stoichiometry**

- _____ The coefficients in a chemical equation represent the
 - masses in grams of all reactants and products.
 - relative number of moles of reactants and products.
 - number of atoms of each element in each compound in a reaction.
 - number of valence electrons involved in a reaction.
- _____ Which of the following would not be studied within the topic of stoichiometry?
 - the mole ratio of Al to Cl in the compound aluminum chloride
 - the mass of carbon produced when a known mass of sucrose decomposes
 - the number of moles of hydrogen that will react with a known quantity of oxygen
 - the amount of energy required to break the ionic bonds in CaF_2
- _____ A balanced chemical equation allows you to determine the
 - mole ratio of any two substances in the reaction.
 - energy released in the reaction.
 - electron configuration of all elements in the reaction.
 - reaction mechanism involved in the reaction.
- _____ The relative number of moles of hydrogen to moles of oxygen that react to form water represents a(n)
 - reaction sequence.
 - bond energy.
 - mole ratio.
 - element proportion.
- Given the reaction represented by the following unbalanced equation:
 $\text{N}_2\text{O}(g) + \text{O}_2(g) \rightarrow \text{NO}_2(g)$

a. Which of Balanced equation is correct?

$$\frac{4 \text{ mol NO}_2}{3 \text{ mol O}_2}$$

$$\frac{3 \text{ moles O}_2}{4 \text{ mol NO}_2}$$

b. What is the mole ratio of NO_2 to O_2 ?c. If 20.0 mol of NO_2 form, how many moles of O_2 must have been consumed?
_____d. Twice as many moles of NO_2 form as moles of N_2O are consumed. True or False?
_____e. Twice as many grams of NO_2 form as grams of N_2O are consumed. True or False?

6. Given the following equation: $\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightarrow 2\text{NH}_3(\text{g})$

a. Determine to one decimal place the molar mass of each substance and express each mass in grams per mole.

b. Select the mole ratios for the equation above.

$$\frac{1 \text{ mol N}_2}{2 \text{ moles NH}_3}$$

$$\frac{1 \text{ mol N}_2}{1 \text{ moles H}_2}$$

$$\frac{2 \text{ mol NH}_3}{1 \text{ moles N}_2}$$

$$\frac{1 \text{ mol N}_2}{3 \text{ moles H}_2}$$

$$\frac{3 \text{ mol H}_2}{1 \text{ moles N}_2}$$

$$\frac{3 \text{ mol H}_2}{2 \text{ moles NH}_3}$$

$$\frac{2 \text{ mol NH}_3}{3 \text{ moles H}_2}$$

$$\frac{2 \text{ mol H}_2}{3 \text{ moles NH}_3}$$

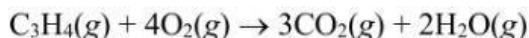
7. Given the following equation: $4\text{NH}_3(\text{g}) + 6\text{NO}(\text{g}) \rightarrow 5\text{N}_2(\text{g}) + 6\text{H}_2\text{O}(\text{g})$ a. What is the mole ratio of NO to H_2O ?

$$\frac{6 \text{ mol NO}}{6 \text{ moles H}_2\text{O}}$$

$$\frac{6 \text{ moles H}_2\text{O}}{6 \text{ mol NO}}$$

$$\frac{6 \text{ moles H}_2\text{O}}{5 \text{ mol N}_2}$$

b. What is the mole ratio of NO to NH_3 ?


$$\frac{4 \text{ moles NH}_3}{6 \text{ mol NO}}$$

$$\frac{6 \text{ mol NO}}{4 \text{ moles NH}_3}$$

$$\frac{6 \text{ mol NO}}{5 \text{ mol N}_2}$$

c. If 0.240 mol of NH_3 react according to the above equation, how many moles of NO will be consumed?

8. Propyne gas can be used as a fuel. The combustion reaction of propyne can be represented by the following equation:

a. Select all the possible mole ratios in this system.

$$\frac{1 \text{ mol C}_3\text{H}_4}{4 \text{ moles O}_2}$$

$$\frac{4 \text{ moles O}_2}{1 \text{ mol C}_3\text{H}_4}$$

$$\frac{2 \text{ moles H}_2\text{O}}{4 \text{ mol C}_3\text{H}_4}$$

$$\frac{1 \text{ mol C}_3\text{H}_4}{3 \text{ moles CO}_2}$$

$$\frac{3 \text{ moles CO}_2}{1 \text{ mol C}_3\text{H}_4}$$

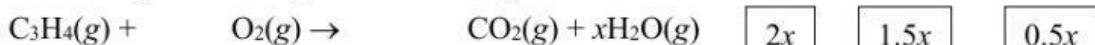
$$\frac{2 \text{ moles CO}_2}{1 \text{ moles H}_2\text{O}}$$

$$\frac{1 \text{ mol C}_3\text{H}_4}{2 \text{ moles H}_2\text{O}}$$

$$\frac{2 \text{ moles H}_2\text{O}}{1 \text{ mol C}_3\text{H}_4}$$

$$\frac{4 \text{ moles O}_2}{3 \text{ moles CO}_2}$$

$$\frac{3 \text{ moles CO}_2}{4 \text{ moles O}_2}$$


$$\frac{4 \text{ moles O}_2}{2 \text{ moles H}_2\text{O}}$$

$$\frac{2 \text{ moles H}_2\text{O}}{4 \text{ moles O}_2}$$

$$\frac{2 \text{ mol C}_3\text{H}_4}{2 \text{ moles H}_2\text{O}}$$

$$\frac{2 \text{ moles H}_2\text{O}}{3 \text{ moles CO}_2}$$

$$\frac{3 \text{ moles CO}_2}{2 \text{ moles H}_2\text{O}}$$

b. Suppose that x moles of water form in the above reaction. The other three mole quantities (not in order) are $2x$, $1.5x$, and $0.5x$. Drag and drop these quantities to their respective components in the equation above.

$$2x$$

$$1.5x$$

$$0.5x$$