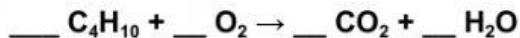


UNIT 4 Identifying and Balancing Reactions


Reference this section of your reference packet

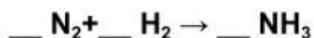
Guidelines for Predicting the Products of Selected Types of Chemical Reaction

Key: M = Metal
NM = Nonmetal

1. **SYNTHESIS:**
 - a. Formation of binary compound: $A + B \rightarrow AB$
 - b. Metal oxide-water reactions: $MO + H_2O \rightarrow$ base
 - c. Nonmetal oxide-water reactions: $(NM)O + H_2O \rightarrow$ acid
2. **DECOMPOSITION:**
 - a. Binary compounds: $AB \rightarrow A + B$
 - b. Metallic carbonates: $MCO_3 \rightarrow MO + CO_2$
 - c. Metallic hydrogen carbonates: $MHCO_3 \rightarrow MO + H_2O + CO_2$
 - d. Metallic hydroxides: $MOH \rightarrow MO + H_2O$
 - e. Metallic chlorates: $MClO_3 \rightarrow MCl + O_2$
 - f. Oxyacids decompose to nonmetal oxides and water: acid $\rightarrow (NM)O + H_2O$
3. **SINGLE REPLACEMENT:**
 - a. Metal-metal replacement: $A + BC \rightarrow AC + B$
 - b. Active metal replaces H from water: $M + H_2O \rightarrow MOH + H_2$
 - c. Active metal replaces H from acid: $M + HX \rightarrow MX + H_2$
 - d. Halide-Halide replacement: $D + BC \rightarrow BD + C$
4. **DOUBLE REPLACEMENT:** $AB + CD \rightarrow AD + CB$
 - a. Formation of a precipitate from solution
 - b. Acid-Base neutralization reaction
5. **COMBUSTION REACTION**
Hydrocarbon + oxygen \rightarrow carbon dioxide + water

Select the coefficients that balance the equation and then identify the type of reaction.

Type of reaction: _____


Type of reaction: _____

Type of reaction: _____

Type of reaction: _____

Type of reaction: _____

UNIT 4 Solubility Rules

Reference this section of your reference packet

SOLUBILITY RULES

Soluble:

- All Nitrates, Acetates, Ammonium, and Group 1 (IA) salts
- All Chlorides, Bromides, and Iodides, except Silver, Lead, and Mercury(I)
- All Fluorides except Group 2 (IIA), Lead(II), and Iron(III)
- All Sulfates except Calcium, Strontium, Barium, Mercury, Lead(II), and Silver

Insoluble (0.10 M or greater):

- All Carbonates and Phosphates except Group 1 (IA) and Ammonium
- All Hydroxides except Group 1 (IA), Strontium, Barium, and Ammonium
- All Sulfides except Group 1 (IA), 2 (IIA), and Ammonium
- All Oxides except Group 1 (IA)

If the compound is soluble, that means that it _____ (will, will not) dissolve in water and that the state of matter of the compound will _____ (remain solid, dissociate into aqueous ions).

If the compound is insoluble, that means that it _____ (will, will not) dissolve in water and that the state of matter of the compound will _____ (remain solid, dissociate into aqueous ions).

In some cases, aqueous ions will recombine to form a new solid product. We say these products precipitate out of solution meaning that they form an _____ (insoluble solid precipitate, soluble spectator ion).

The soluble ions that don't take part in the reaction to form an insoluble product are called our _____ (insoluble solid precipitate, soluble spectator ions). We see these as the _____ (soluble, insoluble) compound on the product side of our reaction.

For the following compounds, use your solubility rules and state whether each compound would be soluble or insoluble. If the compound is soluble, write (aq) for the state of matter. If the compound is insoluble, write (s) for the state of matter.

Calcium Sulfate _____

Ammonium Nitrate _____

Barium Hydroxide _____

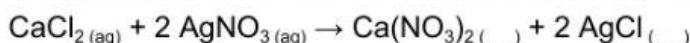
Sodium Carbonate _____

Aluminum Carbonate _____

Lead (II) Chloride _____

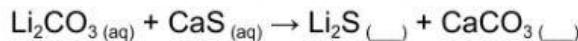
For the double replacement reactions below, two soluble compounds will dissociate in solution to make two new products.

Use your solubility rules to determine if each product is either soluble or insoluble. If the compound is soluble, write **aqueous (aq)** for the state of matter. If the compound is insoluble, write **solid (s)** for the state of matter to indicate that the product is a solid precipitate.


SOLUBILITY RULES

Soluble:

- All Nitrates, Acetates, Ammonium, and Group 1 (IA) salts
- All Chlorides, Bromides, and Iodides, except Silver, Lead, and Mercury(I)
- All Fluorides except Group 2 (IIA), Lead(II), and Iron(III)
- All Sulfates except Calcium, Strontium, Barium, Mercury, Lead(II), and Silver


Insoluble (0.10 M or greater):

- All Carbonates and Phosphates except Group 1 (IA) and Ammonium
- All Hydroxides except Group 1 (IA), Strontium, Barium, and Ammonium
- All Sulfides except Group 1 (IA), 2 (IIA), and Ammonium
- All Oxides except Group 1 (IA)

- The product $\text{Ca}(\text{NO}_3)_2$ is _____ (insoluble, soluble) meaning that they would contain our _____ (spectator ions, precipitate)
- The product AgCl is _____ (insoluble, soluble) meaning that it would be our _____ (spectator ions, precipitate)

The Net ionic equation for the reaction above would be

- The product Li_2S is _____ (insoluble, soluble) meaning that it would contain our _____ (spectator ions, precipitate)
- The product CaCO_3 is _____ (insoluble, soluble) meaning that this product would be our _____ (spectator ions, precipitate)

The Net ionic equation for the reaction above would be

Unit 4 Activity Series

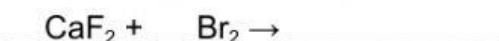
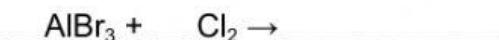
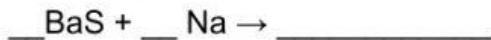
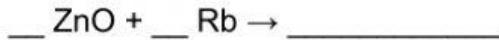
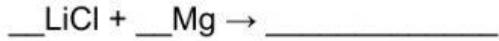
Reference this section of your reference packet

ACTIVITY SERIES of Halogens:

F₂
Cl₂
Br₂
I₂

ACTIVITY SERIES of Metals:

Li				
Rb	↑	↑	↑	
K				
Ba				
Sr				
Ca				
Na				
Mg				
Al				
Mn				
Zn				
Cr				
Fe				
Cd				
Co				
Ni				
Sn				
Pb				
[H ₂]				
Sb				
Bi				
Cu				
Hg				
Ag				
Pt				
Au				






The most reactive Halogen would be _____.

If a more reactive halogen is by itself in a single replacement reaction, it _____ (will, will not) swap with the _____ (less reactive metal, less reactive halogen) that is bonded.

The most reactive metal would be _____.

If a more reactive metal is by itself in a single replacement reaction, it _____ (will, will not) swap with the _____ (less reactive metal, less reactive halogen) that is bonded.

Determine if the following reactions occur. If the reaction occurs, write the correct products for the reaction. No need to balance the equation. If the reaction does not occur, write does not occur

Unit 5 Activity Series

Reference this section of your reference packet

Chemistry Reference Tables

Name	Value
Avogadro's number	6.022×10^{23} particles/mole
Gas constant (R)	$0.0821 \frac{\text{L atm}}{\text{mole K}}$ $62.4 \frac{\text{L mmHg}}{\text{mole K}}$ $8.314 \frac{\text{L kPa}}{\text{mole K}}$
Standard pressure	$1.00 \text{ atm} = 101.3 \text{ kPa} = 760. \text{ mmHg} = 760. \text{ torr}$
Standard temperature	0°C or 273K
Volume of 1 mole of any gas at STP	22.4 L

PERIODIC TABLE																		OF THE ELEMENTS																																																																																																																																																																																																																																																																																																																																																																				
1 1 H Hydrogen 1.008	2 1 He Helium 0.0041	3 2 Li Lithium 6.941	4 3 Be Boron 0.012	5 4 B Boron 10.81	6 5 C Carbon 12.01	7 6 N Nitrogen 14.03	8 7 O Oxygen 16.00	9 8 F Fluorine 19.00	10 9 Ne Neon 20.18	11 10 Mg Magnesium 24.31	12 11 Al Aluminum 26.98	13 12 Si Silicon 28.98	14 13 P Phosphorus 30.97	15 14 S Sulfur 32.07	16 15 Cl Chlorine 35.45	17 16 Ar Argon 39.90	18 17 VIIA	19 18 K Potassium 39.10	20 19 Ca Calcium 40.08	21 18 Sc Scandium 44.96	22 19 Ti Titanium 47.88	23 19 V Vanadium 50.94	24 20 Cr Chromium 51.99	25 21 Mn Manganese 54.94	26 22 Fe Iron 55.85	27 23 Co Cobalt 58.93	28 24 Ni Nickel 58.69	29 25 Cu Copper 63.55	30 26 Zn Zinc 65.39	31 27 Ga Gallium 69.72	32 28 Ge Germanium 72.63	33 29 As Arsenic 74.92	34 30 Se Selenium 78.98	35 31 Br Bromine 79.90	36 32 Kr Krypton 83.86	37 33 Rb Rubidium 85.42	38 34 Sr Strontium 87.62	39 35 Y Yttrium 88.91	40 36 Zr Zirconium 91.22	41 37 Nb Niobium 92.93	42 38 Ta Tantalum 98.04	43 39 Tc Technetium (98)	44 40 Ru Ruthenium (101)	45 41 Rh Rhodium (102)	46 42 Pd Palladium (103)	47 43 Ag Silver (104)	48 44 Cd Cadmium (105)	49 45 In Indium (107)	50 46 Sn Tin (108)	51 47 Sb Antimony (109)	52 48 Te Tellurium (110)	53 49 I Iodine (111)	54 50 Xe Xenon (112)	55 51 Kr Krypton (113)	56 52 Rn Radon (114)	57 53 Fr Francium (115)	58 54 Ra Radium (116)	59 55 Ac Actinium (117)	60 56 Th Thorium (118)	61 57 Pa Protactinium (119)	62 58 U Uranium (120)	63 59 Np Neptunium (121)	64 60 Pu Plutonium (122)	65 61 Tb Thulium (128)	66 62 Dy Dysprosium (140)	67 63 Ho Holmium (141)	68 64 Er Erbium (142)	69 65 Tm Thulium (144)	70 66 Yb Ytterbium (145)	71 67 Lu Lutetium (147)	72 68 Hf Hafnium (178)	73 69 Ta Tantalum (180)	74 70 W Tungsten (184)	75 71 Re Rhenium (186)	76 72 Os Osmium (190)	77 73 Ir Iridium (192)	78 74 Pt Platinum (195)	79 75 Au Gold (197)	80 76 Hg Mercury (199)	81 77 Tl Thallium (200)	82 78 Pb Lead (204)	83 79 Bi Bismuth (207)	84 80 Po Polonium (209)	85 81 At Astatine (210)	86 82 Rn Radon (210)	87 83 Fr Francium (210)	88 84 Ra Radium (210)	89 85 Ac Actinium (210)	90 86 Th Thorium (210)	91 87 Pa Protactinium (211)	92 88 U Uranium (210)	93 89 Np Neptunium (211)	94 90 Pu Plutonium (214)	95 91 Am Americium (243)	96 92 Cm Curium (247)	97 93 Bk Berkelium (247)	98 94 Cf Californium (251)	99 95 Es Einsteinium (252)	100 96 Fm Fermium (257)	101 97 Md Mendelevium (258)	102 98 No Neptunium (259)	103 99 Lr Lawrencium (259)	104 100 Nh Nhastium (260)	105 101 Nh Nhastium (260)	106 102 Nh Nhastium (260)	107 103 Nh Nhastium (260)	108 104 Nh Nhastium (260)	109 105 Nh Nhastium (260)	110 106 Nh Nhastium (260)	111 107 Nh Nhastium (260)	112 108 Nh Nhastium (260)	113 109 Nh Nhastium (260)	114 110 Nh Nhastium (260)	115 111 Nh Nhastium (260)	116 112 Nh Nhastium (260)	117 113 Nh Nhastium (260)	118 114 Nh Nhastium (260)	119 115 Nh Nhastium (260)	120 116 Nh Nhastium (260)	121 117 Nh Nhastium (260)	122 118 Nh Nhastium (260)	123 119 Nh Nhastium (260)	124 120 Nh Nhastium (260)	125 121 Nh Nhastium (260)	126 122 Nh Nhastium (260)	127 123 Nh Nhastium (260)	128 124 Nh Nhastium (260)	129 125 Nh Nhastium (260)	130 126 Nh Nhastium (260)	131 127 Nh Nhastium (260)	132 128 Nh Nhastium (260)	133 129 Nh Nhastium (260)	134 130 Nh Nhastium (260)	135 131 Nh Nhastium (260)	136 132 Nh Nhastium (260)	137 133 Nh Nhastium (260)	138 134 Nh Nhastium (260)	139 135 Nh Nhastium (260)	140 136 Nh Nhastium (260)	141 137 Nh Nhastium (260)	142 138 Nh Nhastium (260)	143 139 Nh Nhastium (260)	144 140 Nh Nhastium (260)	145 141 Nh Nhastium (260)	146 142 Nh Nhastium (260)	147 143 Nh Nhastium (260)	148 144 Nh Nhastium (260)	149 145 Nh Nhastium (260)	150 146 Nh Nhastium (260)	151 147 Nh Nhastium (260)	152 148 Nh Nhastium (260)	153 149 Nh Nhastium (260)	154 150 Nh Nhastium (260)	155 151 Nh Nhastium (260)	156 152 Nh Nhastium (260)	157 153 Nh Nhastium (260)	158 154 Nh Nhastium (260)	159 155 Nh Nhastium (260)	160 156 Nh Nhastium (260)	161 157 Nh Nhastium (260)	162 158 Nh Nhastium (260)	163 159 Nh Nhastium (260)	164 160 Nh Nhastium (260)	165 161 Nh Nhastium (260)	166 162 Nh Nhastium (260)	167 163 Nh Nhastium (260)	168 164 Nh Nhastium (260)	169 165 Nh Nhastium (260)	170 166 Nh Nhastium (260)	171 167 Nh Nhastium (260)	172 168 Nh Nhastium (260)	173 169 Nh Nhastium (260)	174 170 Nh Nhastium (260)	175 171 Nh Nhastium (260)	176 172 Nh Nhastium (260)	177 173 Nh Nhastium (260)	178 174 Nh Nhastium (260)	179 175 Nh Nhastium (260)	180 176 Nh Nhastium (260)	181 177 Nh Nhastium (260)	182 178 Nh Nhastium (260)	183 179 Nh Nhastium (260)	184 180 Nh Nhastium (260)	185 181 Nh Nhastium (260)	186 182 Nh Nhastium (260)	187 183 Nh Nhastium (260)	188 184 Nh Nhastium (260)	189 185 Nh Nhastium (260)	190 186 Nh Nhastium (260)	191 187 Nh Nhastium (260)	192 188 Nh Nhastium (260)	193 189 Nh Nhastium (260)	194 190 Nh Nhastium (260)	195 191 Nh Nhastium (260)	196 192 Nh Nhastium (260)	197 193 Nh Nhastium (260)	198 194 Nh Nhastium (260)	199 195 Nh Nhastium (260)	200 196 Nh Nhastium (260)	201 197 Nh Nhastium (260)	202 198 Nh Nhastium (260)	203 199 Nh Nhastium (260)	204 200 Nh Nhastium (260)	205 201 Nh Nhastium (260)	206 202 Nh Nhastium (260)	207 203 Nh Nhastium (260)	208 204 Nh Nhastium (260)	209 205 Nh Nhastium (260)	210 206 Nh Nhastium (260)	211 207 Nh Nhastium (260)	212 208 Nh Nhastium (260)	213 209 Nh Nhastium (260)	214 210 Nh Nhastium (260)	215 211 Nh Nhastium (260)	216 212 Nh Nhastium (260)	217 213 Nh Nhastium (260)	218 214 Nh Nhastium (260)	219 215 Nh Nhastium (260)	220 216 Nh Nhastium (260)	221 217 Nh Nhastium (260)	222 218 Nh Nhastium (260)	223 219 Nh Nhastium (260)	224 220 Nh Nhastium (260)	225 221 Nh Nhastium (260)	226 222 Nh Nhastium (260)	227 223 Nh Nhastium (260)	228 224 Nh Nhastium (260)	229 225 Nh Nhastium (260)	230 226 Nh Nhastium (260)	231 227 Nh Nhastium (260)	232 228 Nh Nhastium (260)	233 229 Nh Nhastium (260)	234 230 Nh Nhastium (260)	235 231 Nh Nhastium (260)	236 232 Nh Nhastium (260)	237 233 Nh Nhastium (260)	238 234 Nh Nhastium (260)	239 235 Nh Nhastium (260)	240 236 Nh Nhastium (260)	241 237 Nh Nhastium (260)	242 238 Nh Nhastium (260)	243 239 Nh Nhastium (260)	244 240 Nh Nhastium (260)	245 241 Nh Nhastium (260)	246 242 Nh Nhastium (260)	247 243 Nh Nhastium (260)	248 244 Nh Nhastium (260)	249 245 Nh Nhastium (260)	250 246 Nh Nhastium (260)	251 247 Nh Nhastium (260)	252 248 Nh Nhastium (260)	253 249 Nh Nhastium (260)	254 250 Nh Nhastium (260)	255 251 Nh Nhastium (260)	256 252 Nh Nhastium (260)	257 253 Nh Nhastium (260)	258 254 Nh Nhastium (260)	259 255 Nh Nhastium (260)	260 256 Nh Nhastium (260)	261 257 Nh Nhastium (260)	262 258 Nh Nhastium (260)	263 259 Nh Nhastium (260)	264 260 Nh Nhastium (260)	265 261 Nh Nhastium (260)	266 262 Nh Nhastium (260)	267 263 Nh Nhastium (260)	268 264 Nh Nhastium (260)	269 265 Nh Nhastium (260)	270 266 Nh Nhastium (260)	271 267 Nh Nhastium (260)	272 268 Nh Nhastium (260)	273 269 Nh Nhastium (260)	274 270 Nh Nhastium (260)	275 271 Nh Nhastium (260)	276 272 Nh Nhastium (260)	277 273 Nh Nhastium (260)	278 274 Nh Nhastium (260)	279 275 Nh Nhastium (260)	280 276 Nh Nhastium (260)	281 277 Nh Nhastium (260)	282 278 Nh Nhastium (260)	283 279 Nh Nhastium (260)	284 280 Nh Nhastium (260)	285 281 Nh Nhastium (260)	286 282 Nh Nhastium (260)	287 283 Nh Nhastium (260)	288 284 Nh Nhastium (260)	289 285 Nh Nhastium (260)	290 286 Nh Nhastium (260)	291 287 Nh Nhastium (260)	292 288 Nh Nhastium (260)	293 289 Nh Nhastium (260)	294 290 Nh Nhastium (260)	295 291 Nh Nhastium (260)	296 292 Nh Nhastium (260)	297 293 Nh Nhastium (260)	298 294 Nh Nhastium (260)	299 295 Nh Nhastium (260)	300 296 Nh Nhastium (260)	301 297 Nh Nhastium (260)	302 298 Nh Nhastium (260)	303 299 Nh Nhastium (260)	304 300 Nh Nhastium (260)	305 301 Nh Nhastium (260)	306 302 Nh Nhastium (260)	307 303 Nh Nhastium (260)	308 304 Nh Nhastium (260)	309 305 Nh Nhastium (260)	310 306 Nh Nhastium (260)	311 307 Nh Nhastium (260)	312 308 Nh Nhastium (260)	313 309 Nh Nhastium (260)	314 310 Nh Nhastium (260)	315 311 Nh Nhastium (260)	316 312 Nh Nhastium (260)	317 313 Nh Nhastium (260)	318 314 Nh Nhastium (260)	319 315 Nh Nhastium (260)	320 316 Nh Nhastium (260)	321 317 Nh Nhastium (260)	322 318 Nh Nhastium (260)	323 319 Nh Nhastium (260)	324 320 Nh Nhastium (260)	325 321 Nh Nhastium (260)	326 322 Nh Nhastium (260)	327 323 Nh Nhastium (260)	328 324 Nh Nhastium (260)	329 325 Nh Nhastium (260)	330 326 Nh Nhastium (260)	331 327 Nh Nhastium (260)	332 328 Nh Nhastium (260)	333 329 Nh Nhastium (260)	334 330 Nh Nhastium (260)	335 331 Nh Nhastium (260)	336 332 Nh Nhastium (260)	337 333 Nh Nhastium (260)	338 334 Nh Nhastium (260)	339 335 Nh Nhastium (260)	340 336 Nh Nhastium (260)	341 337 Nh Nhastium (260)	342 338 Nh Nhastium (260)	343 339 Nh Nhastium (260)	344 340 Nh Nhastium (260)	345 341 Nh Nhastium (260)	346 342 Nh Nhastium (260)	347 343 Nh Nhastium (260)	348 344 Nh Nhastium (260)	349 345 Nh Nhastium (260)	350 346 Nh Nhastium (260)	351 347 Nh Nhastium (260)	352 348 Nh Nhastium (260)	353 349 Nh Nhastium (260)	354 350 Nh Nhastium (260)	355 351 Nh Nhastium (260)	356 352 Nh Nhastium (260)	357 353 Nh Nhastium (260)	358 354 Nh Nhastium (260)	359 355 Nh Nhastium (260)	360 356 Nh Nhastium (260)	361 357 Nh Nhastium (260)	362 358 Nh Nhastium (260)	363 359 Nh Nhastium (260)	364 360 Nh Nhastium (260)	365 361 Nh Nhastium (260)	366 362 Nh Nhastium (260)	367 363 Nh Nhastium (260)	368 364 Nh Nhastium (260)	369 365 Nh Nhastium (260)	370 366 Nh Nhastium (260)	371 367 Nh Nhastium (260)	372 368 Nh Nhastium (260)	373 369 Nh Nhastium (260)	374 370 Nh Nhastium (260)	375 371 Nh Nhastium (260)</

PERIODIC TABLE

1 H Hydrogen 1.008	2 He Helium 4.003	OF THE ELEMENTS												18 He Helium 4.003		
3 Li Lithium 6.941	4 Be Boron 9.012	5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18	11 Na Sodium 22.99	12 Mg Magnesium 24.31	13 Al Aluminum 26.99	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.90	
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.86	23 V Vanadium 50.94	24 Cr Chromium 51.99	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selenium 78.94	35 Kr Krypton 83.86
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.23	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium (98)	45 Rh Rhodium (98)	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sb Antimony 118.71	51 Te Tellurium 121.76	52 I Iodine 127.60	53 Xe Xenon 131.25
55 Cs Cesium 132.91	56 Ba Barium 137.38	57 La Lanthanum 139.91	58 Hf Hafnium 178.49	59 Ta Tantalum 180.35	60 W Tungsten 183.94	61 Re Rhenium 186.21	62 Os Osmium 190.23	63 Os Osmium 192.21	64 Pt Platinum 195.08	65 Au Gold 196.97	66 Hg Mercury 200.59	67 Tl Thallium 204.38	68 Bi Bismuth 207.2	69 Po Polonium 208.98	70 At Astatine (210)	71 Rn Radium (222)
87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	90 Rf Rutherfordium (262)	91 Nh Nhastium (263)	92 U Uranium (235)	93 Nh Nhastium (264)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (253)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Neptunium (259)	103 Lr Lawrencium (242)

2018 Reference Tables for Chemistry (October 2018) Item #411

Page 4

Consider the reaction Below

The Necessary mole equations for the reaction above would be:

- 1 Mole Particles = 6.02×10^{23} Particles
- 1 Mole Substance = _____ found from the element symbol
- 1 Mole of gas = 22.4 Liters @ STP
- Mole \longleftrightarrow mole equation: 2 mole Na = 1 mole Cl₂ = 2 mol NaCl

Question 1: How many moles of NaCl could be produced from the addition of 8 moles of Chlorine gas?

Question 2: How many moles of NaCl could be produced from the addition of 100 Liters of Chlorine gas?

Question 3: How many grams of NaCl could be produced from the addition of 100 Liters of Chlorine gas?

Question 4: How many Liters of chlorine gas would be required to react with 5.0×10^{24} Sodium atoms?

% Composition, Empirical Formula, Molecular Formula

% Composition worked out example	Determine the % composition of Iron and Chlorine in the compound FeCl_3
<p>1. Calculate the percentage of both hydrogen and oxygen in water.</p> $\begin{array}{l} \text{H (2)} 1.0 \text{ g} = 2.0 \text{ g} \xrightarrow{\text{Part}} \\ \text{O (1)} 16.0 \text{ g} = 16.0 \text{ g} \xrightarrow{\text{Part}} \\ 18.0 \text{ g} \xrightarrow{\text{Whole}} \end{array}$ $\% \text{ H} = \frac{2.0 \text{ g}}{18.0 \text{ g}} \times 100 = 11.1\%$ $\% \text{ O} = \frac{16.0 \text{ g}}{18.0 \text{ g}} \times 100 = 88.9\%$	Compound FeCl_3 $\% \text{Fe} = \underline{\hspace{2cm}}$ $\% \text{Cl} = \underline{\hspace{2cm}}$
Empirical formula Problem with worked out solution for NO_2	You try empirical formula example
<p>Find the empirical formula for a substance consisting of 30.4 % nitrogen and 69.6 % oxygen.</p> $\begin{array}{l} \frac{30.4 \text{ g N}}{1} \times \frac{1 \text{ mol N}}{14.0 \text{ g N}} = 2.17 \text{ mol N} \xrightarrow{\text{①}} \frac{2.17}{2.17} = 1 \text{ mol N} \\ \frac{69.6 \text{ g O}}{1} \times \frac{1 \text{ mol O}}{16.0 \text{ g O}} = 4.35 \text{ mol O} \xrightarrow{\text{②}} \frac{4.35}{2.17} = 2 \text{ mol O} \xrightarrow{\text{③}} \text{ empirical formula} \end{array}$	<p>Find the empirical formula for a compound consisting of 15.8 % Carbon and 84.2 % Sulfur.</p>
<p>What is the molecular formula for a substance with this empirical formula that has a mass of 92.02 grams?</p>	<p>What is the molecular formula for a substance with the empirical formula that has a mass of 228.45 grams?</p>
<p>Solution $\frac{\text{Molecular Formula mass}}{\text{Empirical Formula mass}} = 2$ $\text{NO}_2 \rightarrow \text{times 2} \rightarrow \text{N}_2\text{O}_4$</p>	<p>Solution $\frac{\text{Molecular Formula mass}}{\text{Empirical Formula mass}} = \underline{\hspace{2cm}}$ $\text{Answer} = \underline{\hspace{2cm}}$</p>