Unit

Quantum Mechanical Model of Atom

Choose the best answer

1.	Electronic configuration of species M2+ is 1s2 2s2 2p6 3s2 3p6 3d6 and its atomic weigh					
	is 56. The number of neutrons in the nucleus of species M is					

- a) 26
- b) 22
- c) 30
- d) 24

2. The energy of light of wavelength 45 nm is

- a) 6.67×10^{15} J
- b) 6.67×10^{11} J
- c) 4.42×10^{-18} J
- d) 4.42×10^{-15} J

The energies E1 and E2 of two radiations are 25 eV and 50 eV respectively. The relation 3. between their wavelengths ie λ_1 and λ_2 will be

- a) $\frac{\lambda_1}{\lambda_2} = 1$
- b) $\lambda_1 = 2\lambda_2$ c) $\lambda_1 = \sqrt{25 \times 50} \lambda_2$ d) $2\lambda_1 = \lambda_2$

4. Splitting of spectral lines in an electric field is called

a) Zeeman effect

b) Shielding effect

c) Compton effect

d) Stark effect

Based on equation $E = -2.178 \times 10^{-18} \text{ J} \left(\frac{z^2}{n^2}\right)$, certain conclusions are written. Which 5. of them is not correct ? (NEET)

a) Equation can be used to calculate the change in energy when the electron changes orbit

b) For n = 1, the electron has a more negative energy than it does for n = 6 which means that the electron is more loosely bound in the smallest allowed orbit

c) The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.

d) Larger the value of n, the larger is the orbit radius.

	6.		According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon?								
		a) n =	6 to n = 1		b) $n = 5$ to $n = 4$						
		c) n =	5 to n = 3		d) $n = 6$ to $n = 5$						
	7.	Assertion : The spectrum of He ⁺ is expected to be similar to that of hydrogen									
		Reason: He ⁺ is also one electron system.									
		(a)	(a) If both assertion and reason are true and reason is the correct explanation of assertion.								
		(b)	If both assertion.	ertion and reason a	re true but reason is i	not the correct explanation of					
		(c)	If assertion	is false							
		(d)	If both ass	are false							
	8.	8. Which of the following pairs of d-orbitals will have electron density along the (NEET Phase - II)									
		a)	d_{z^2}, d_{xz}	b) d _{xz} , d _{yz}	c) d_{z^2} , $d_{x^2-y^2}$	$d) d_{xy^3} d_{x^2-y^2}$					
	9.	Two	electrons occ	upying the same of	rbital are distinguishe	ed by					
		a) azi	imuthal quan	tum number	b) spin quantur	n number					
		c) ma	agnetic quant	um number	d) orbital quant	d) orbital quantum number					
 The electronic configuration of Eu (Atomic no. 63) Gd (Atomic no. 64) and Tb no. 65) are (NEET - Phase II) 											
		a) [Xe	e] 4f ⁶ 5d ¹ 6s ² ,	[Xe] 4f ⁷ 5d ¹ 6s ² and	d [Xe] 4f ⁸ 5d ¹ 6s ²						
		b) [X	e] 4f ⁷ , 6s ² , [X	e] 4f ⁷ 5d ¹ 6s ² and [2	$Xe] 4f^9 6s^2$						
		c) [Xe	e] 4f ⁷ , 6s ² , [X	e] 4f ⁸ 6s ² and [Xe]	$4f^8 5d^1 6s^2$						
		d) [X	e] 4f ⁶ 5d ¹ 6s ² ,	[Xe] 4f ⁷ 5d ¹ 6s ² and	d [Xe] 4f ⁹ 6s ²						
	11.	The n	naximum nun	nber of electrons in	a sub shell is given by	the expression					
		a) 2n ²	2	b) 2l + 1	c) 4l + 2	d) none of these					

12.	For d-electron, the orbital angular momentum is											
	a) $\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}h}{2\pi}$		b) $\frac{\sqrt{2}}{2}$	<mark>2h</mark> π	(c) \(\frac{\sqrt{1}}{2}	2×4 h 2π		d)	$\frac{\sqrt{6} \text{ h}}{2\pi}$	
13. What is the maximum numbers of electrons that can be associated with set of quantum numbers ? $n=3, l=1$ and $m=-1$							th the fo	ollowing				
	a) 4			b) 6		c) 2				d) = 10		
14.	Assertion: Number of radial and angular nodes for 3p orbital are 1, 1 respectively.											
	Reason: Number of radial and angular nodes depends only on principal quantum number.											
	(a)	(a) both assertion and reason are true and reason is the correct explanation of assertion.										
	(b)	(b) both assertion and reason are true but reason is not the correct explanation of assertion.										
	(c)	asser	rtion is t	rue but r	eason is fa	lse						
	(d)	both	assertio	n and re	ason are fa	lse						
15. The total number of orbitals associated with the principal quantum						ntum nu	mber n	= 3 is				
	a) 9			b) 8		c) 5				d) 7		
16. If $n = 6$, the correct sequence for filling of electrons will be,												
	a) ns	s → (n -	$\Rightarrow (n-2) f \Rightarrow (n-1)d \Rightarrow np$ b) $ns \Rightarrow (n-1) d \Rightarrow (n-2) f \Rightarrow np$									
	c) ns \Rightarrow (n - 2) f \Rightarrow np \Rightarrow (n - 1) d d) none of these are correct											
17. Consider the following sets of quantum numbers :												
		n	1	m	s							
	(i)	3	0	0	+ 1/2	(iii)	4	3	-2	+ 1/2		
	(ii)	2	2	1	$+\frac{1}{2}$ $-\frac{1}{2}$	(iv)	1	0	-1	+ 1/2		
					12	(v)	3	4	3	$-\frac{1}{2}$		

	c)	(i) and (iii)		d) (ii), (iii) and (iv)					
18	8. H	ow many electrons	s in an atom with ato	tomic number 105 can have $(n + 1) = 8$?					
	a)	30	b) 17	c) 15	d) unpredictable				
19	e. El	ectron density in t	he yz plane of 3d _{xy} o	_{xy} orbital is					
	a)	zero	b) 0.50	c) 0.75	d) 0.90				
20		uncertainty in po	sition and moment	nentum are equal, then minimum uncertainty in					
			1 74	c) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$					
21	. A macroscopic particle of mass 100 g and moving at a velocity of 100 cm s $^{-1}$ will have a de Broglie wavelength of								
	a)	$6.6\times10^{-29}~\mathrm{cm}$	b) 6.6×10^{-30} cm	c) 6.6×10^{-31} cm	d) 6.6×10^{-32} cm				
22	2. The ratio of de Broglie wavelengths of a deuterium atom to that of an α - particle, wh the velocity of the former is five times greater than that of later, is								
	a)	4	b) 0.2	c) 2.5	d) 0.4				
23		ne energy of an ele		oit of hydrogen atom	is -E. The energy of an				
	a)	-3E	b) -E/3	c) - <u>F/9</u>	d) -9E				
24	24. Time independent Schnodinger wave equation is								
		$\hat{H}\psi$ – $E\psi$		b) $\nabla^2 \psi + \frac{8\pi^2 m}{h^2} (E + V) \psi = 0$					
	c)	$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{\partial^2 \psi}{\partial z^2}$	$\frac{2m}{h^2}(E-V)\psi=0$	d) all of these					
25	25. Which of the following does not represent the mathematical expression for Heisenberg uncertainty principle?								
	a)	$\Delta x \cdot \Delta p \ge h_{4\pi}$		b) $\Delta x \cdot \Delta v \ge \frac{h}{4\pi m}$					
	c)	$\Delta E . \Delta t \geq \frac{h}{4\pi}$		d) $\Delta E \cdot \Delta x \ge \frac{h}{4\pi}$					

Which of the following sets of quantum number is not possible?

b) (ii), (iv) and (v)

a) (i), (ii), (iii) and (iv)