

Example 1

Calculate the specific heat capacity of concrete if 3570 J of heat causes the temperature of a 275 gram sample to change from 11.35 °C to 27.45 °C?

Solution

$$Q = 3570 \text{ J}; m = 275 \text{ gram};$$

$$\text{Temperature change} = 27.45 - 11.35 = 16.1 \text{ }^{\circ}\text{C}$$

$$Q = mc\Delta\theta$$

$$3570 = (275) \times c \times (16.1)$$

$$3570 = 4427.5 \times c$$

$$c = \frac{3570}{4427.5} = 0.806 \text{ J/g }^{\circ}\text{C}$$

Example 2

How much heat is required to raise the temperature of 250.0 g of mercury by 52 °C? (specific heat capacity mercury = 140 J/kg °C)

Solution

$$\begin{aligned} m &= 250.0 \\ &= \text{g} \\ &= \text{kg} \end{aligned}$$

$$\Delta\theta = 52 \text{ }^{\circ}\text{C}$$

$$c_{\text{mer}} = 140 \text{ J/kg }^{\circ}\text{C}^{-1}$$

$$\begin{aligned} Q &= mc\Delta\theta \\ &= (250.0)(140)(52) \\ &= 1680000 \text{ J} \end{aligned}$$

Example 3

216 J of energy is required to raise the temperature of aluminum from 15°C to 35°C . Calculate the mass of aluminum. Specific Heat Capacity of aluminum is $0.90 \text{ J}^{\circ}\text{C}^{-1}\text{g}^{-1}$.

Solution

$$Q = \text{J}$$

$$\Delta\theta = {}^{\circ}\text{C} - {}^{\circ}\text{C}$$
$$= {}^{\circ}\text{C}$$

$$m = ?$$

$$c = \text{J}^{\circ}\text{C}^{-1}\text{g}^{-1}$$

$$\text{So } Q = mc\theta$$
$$= m() ()$$

$$\therefore m = \underline{(X)}$$

$$= \text{grams}$$

Note that this unit is in $\text{J}^{\circ}\text{C}^{-1}\text{g}^{-1}$. So the calculation will obtain the mass value in grams.

Example 4

3.5 kg of liquid X at 95°C is allowed to cool. If the specific heat capacity of liquid is 600 J/kg°C and 9550 J of heat energy is released, calculate the final temperature of the liquid.

$$m = \text{kg}$$

$$\theta_{\text{initial}} = {}^{\circ}\text{C}$$

$$c = \text{J kg}^{-1} {}^{\circ}\text{C}^{-1}$$

$$\theta = \text{J}$$

$$\theta_{\text{final}} = ?$$

Note that $\Delta\theta$ is the change of temperature. Just take any higher (hotter) value minus the smaller (colder) value.

$$\text{So, } Q = mc \Delta\theta$$

$$= mc(\theta_i - \theta_f)$$

$$= () () (- \theta_f)$$

$$= -\theta_f$$

$$\overline{() ()}$$

$$\theta_f = -$$

$$= {}^{\circ}\text{C} *$$

Example 5

The initial temperature of 150g of ethanol was 22°C . What will be the final temperature of the ethanol if 3240 J was needed to raise the temperature of the ethanol? Specific heat capacity of ethanol is $2400 \text{ J}^{\circ}\text{C}^{-1}\text{kg}^{-1}$.

Solution

$$\begin{aligned}m &= & \text{g} \\&= & \text{kg}\end{aligned}$$

$$\theta_i = {}^{\circ}\text{C}$$

$$\theta_f = ?$$

$$\begin{aligned}Q &= \text{J} \\c &= \text{J}^{\circ}\text{C}^{-1}\text{kg}^{-1}\end{aligned}$$

$$\begin{aligned}\text{So } Q &= mc \Delta\theta \\&= (\quad)(\quad)(\theta_f - \quad)\end{aligned}$$

$$\frac{1}{(\quad)(\quad)} = \theta_f -$$

$$\begin{aligned}\therefore \theta_f &= + \\&= {}^{\circ}\text{C}\end{aligned}$$

Example 6

A bicycle and have a combine mass of 133 kg. How many energy of heat are generated in the brakes when the temperature change from 77°F to 42°C. The specific heat capacity of iron is 450 J/kg°C.

$$m = \text{kg}$$

$$\theta_i = 77^\circ\text{F} \rightarrow {}^\circ\text{C}$$
$$= - \times (-)$$

$$\text{So } \Delta\theta = -$$
$$= {}^\circ\text{C}$$

$$c = \text{J kg}^{-1} \text{°C}^{-1}$$

$$Q = m c \Delta\theta$$
$$= ()()()$$

$$= \text{J}$$

@

kJ