Transformations

 Name the three transformations that are an isometry (keep same size and shape). Name the one transformation that is not an isometry.

NOT? _____

 Write the algebraic representations that correctly describes a reflection over the y-axis.

 $(x, y) \rightarrow ($

Over x-axis? $(x, y) \rightarrow ($

3. What is the ordered pair rule for a translation 5 units right and 3 units down?

$$(x,y) \rightarrow (x, y, y)$$

Describe the graph below with regard to the rotation shown.

Transformations

Figure 1 is for questions 5, 6, and 6

5. The image of ABCD is under a rotation of 180° about the origin. What is the ordered pair for B'?

Figure ABCD is graphed with vertices A(7,3), B(4,5), C(3,4) and D(4,2).

- 6. The image of ABCD is under a rotation of 270° clockwise about the origin. What is the ordered pair for A'?
- The image of ABCD is under a reflection over the x-axis. What is the ordered pair for C'?

Transformations

8. Figure A is a dilation of figure B. What is the scale factor?

9. Find the image of (-8,20) with a translation of 5 units right and 2 units down.

Transformations

12. Circle the letter of the following statements that are true:

- a. Dilations create similar figures if the scale factor is not 1.
- b. Dilations preserve angle measure.
- c. Dilations can create larger figures or smaller figures.
- d. Dilations produce congruent figures if the scale factor is greater than 1.

13. Which algebraic representation correctly describes a reflection over the x-axis?

- a. $(x, y) \rightarrow (-x, y)$
- b. $(x, y) \to (-x, -y)$
- c. $(x, y) \rightarrow (x, -y)$
- d. $(x, y) \rightarrow (-y, x)$