GEOMETRÍA ANALÍTICA. TEORÍA Y EJERCICIOS.

OPERACIONES CON VECTORES

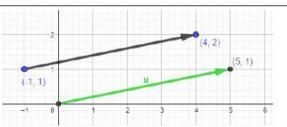
Vamos a trabajar con vectores libres.

Recuerda que para calcular las coordenadas de un vector (cuando no te las den) tienes que hacer la resta de extremo – origen.

Ejemplo:

Halla las coordenadas del vector libre \vec{u} que va del punto (-1,1) al punto (4, 2).

Solución: $\vec{u} = (4,2) - (-1,1) = (5,1)$ (o sea, nos quedamos con el vector verde)



SUMA DE VECTORES

 Analíticamente: se suman sus coordenadas.

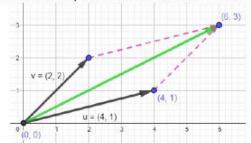
$$\vec{u} + \vec{v} = (u_1, u_2) + (v_1, v_2)$$

= $(u_1 + v_1, u_2 + v_2)$

 Gráficamente: se trazan vectores equipolentes a los originales en los extremos de los vectores. Queda un paralelogramo. Luego se dibuja el vector que va desde el origen a la intersección de los vectores equipolentes. **Ejemplo**. Sumanos los vectores $\vec{u} = (4,1)$ y $\vec{v} = (2,2)$

• Analíticamente: $\vec{u} + \vec{v} = (4,1) + (2,2) = (6,3)$

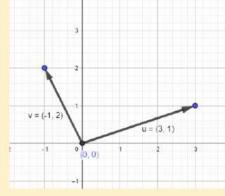
• Gráficamente, la suma está en color verde:



Ejercicio 1. Suma los vectores $\vec{u} = (3,1)$ y $\vec{v} = (-1,2)$ de forma analítica y gráfica (dibújalo con el ratón o el dedo)

Analítica: $\vec{u} + \vec{v} = ($,)

Gráfica:

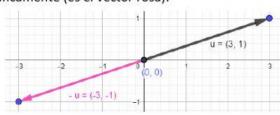


VECTOR OPUESTO

El vector opuesto de \vec{u} es $-\vec{u}$ Solo hay que cambiar el signo de las coordenadas.

Gráficamente, el vector tiene la misma dirección y módulo, pero sentido contrario. Ejemplo. Halla el opuesto de $\vec{u}=(3,1)$. El vector opuesto de $\vec{u}=(3,1)$ es (-3,-1)

Gráficamente (es el vector rosa):



PRODUCTO ESCALAR

Llamamos **escalar** a un número cualquiera. Normalmente se usa la letra k para representarlo.

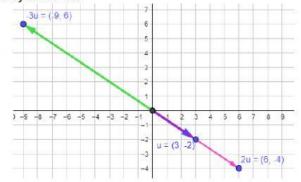
El producto de un escalar k por un vector $\vec{u} = (u_1, u_2)$ es $k \cdot \vec{u} = (k \cdot u_1, k \cdot u_2)$

- Si el número k es positivo, el vector conserva la misma dirección y el mismo sentido. Si es negativo, va en sentido contrario.
- El módulo también acaba multiplicado por k. Es decir, si multiplicamos un vector por 2, el módulo es el doble.

Ejemplo. Sea el vector $\vec{u}=(3,-2)$. Vamos a calcular $2\vec{u}$ y $-3\vec{u}$.

$$\frac{2\vec{u}}{3\vec{u}} = (2 \cdot 3, 2 \cdot (-2)) = (6, -4)$$
$$-3\vec{u} = (-3 \cdot 3, -3 \cdot (-2)) = (-9, 6)$$

Gráficamente:



Ejercicio 2. Tenemos los vectores vectores $\vec{u} = (7,2)$ $\vec{v} = (0,5)$ $\vec{w} = (-2,3)$

Calcula (usa un papel de sucio mejor) y lleva las soluciones a su lugar correspondiente:

Operaciones	Soluciones (hay dos de más)
a) $\vec{\mathbf{u}} + \vec{\mathbf{v}} =$	(-8,22) (9,4) (7,7) (5,20) (7,-3) (2,2) (21,6) (4,6) (4,-6)
b) $\vec{v} - \vec{w} =$	
c) $3\vec{u} =$	
d) $-2\vec{w} =$	
e) $2\vec{v} + 4\vec{w} =$	
f) $\vec{\mathbf{u}} + \vec{v} - \vec{w} =$	
g) $\vec{u} + 3\vec{v} + \vec{w} =$	