

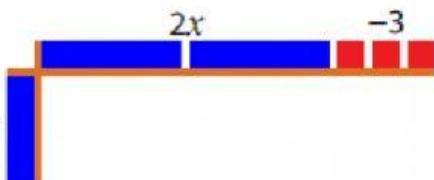
1. Multiplying a binomial by a constant

Determine the product of $3 \times (2x + 5)$

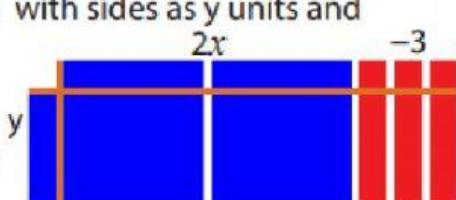
Solution

Step 1: Arrange tiles that represent $3 \times (2x + 5)$ as shown

Step 2: Fill tiles to form a rectangle with sides as 3 units and $(2x + 5)$ units.


Step 3: $3 \times (2x + 5) =$ the area of the rectangle formed.
= the number of tiles that form the rectangle.
 $3 \times (2x + 5) = 6x + 15$

2. Multiplying a binomial by a monomial


Determine the product of $y(2x - 3)$

Solution

Step 1: Arrange tiles that represent $y(2x - 3)$ as shown

Step 2: Fill tiles to form a rectangle with sides as y units and $(2x - 3)$ units.

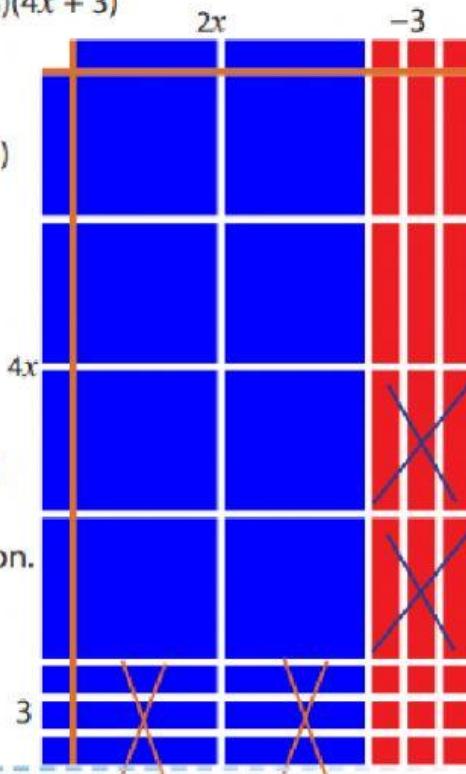
Step 3: $y(2x - 3)$
= the area of the rectangle formed.
= the number of tiles that form the rectangle.

So, $y(2x - 3) = 2xy - 3y$

3. Multiplying a binomial by a binomial

Determine the product of $(2x - 3)(4x + 3)$

Solution


Step 1: Arrange tiles that represent $(2x - 3)(4x + 3)$

Step 2: Fill tiles to form a rectangle with sides as $(4x + 3)$ units and $(2x - 3)$ units.

Step 3: Remove zero pairs and count the remaining terms to get the solution.

So,

$$(2x - 3)(4x + 3) = 8x^2 - 6x - 9$$

4. Multiplying a binomial by a monomial

$$(x)(a+b) = ax + bx$$

5. Multiplying a binomial by a binomial

$$(ax + b) \times (cx + d) = acx^2 + adx + bcx + bd$$

$$(ax + b) \times (cx + d) = acx^2 + (ad + bc)x + bd$$