

Name: _____ Date: _____

PHYSICS

Forces Review & Calculations

Part 1: Read the statements. Choose which option best describes forces or are the effects of forces.

- _____ 1. Which option best describes gravity force?
A. Pull force & contact force
B. Pull force & action-at-a-distance force
C. Push force & contact force
D. Push force & action-at-a-distance force

- _____ 2. Which option best describes electrostatic force when a positively-charged object is near another positive-charged object?
A. Pull force & contact force
B. Pull force & action-at-a-distance force
C. Push force & contact force
D. Push force & action-at-a-distance force

- _____ 3. Which option best describes electrostatic force when a positively-charged object is near a negatively-charged object?
A. Pull force & contact force
B. Pull force & action-at-a-distance force
C. Push force & contact force
D. Push force & action-at-a-distance force

- _____ 4. Which option best describes buoyancy force?
A. Pull force & contact force
B. Pull force & action-at-a-distance force
C. Push force & contact force
D. Push force & action-at-a-distance force

- _____ 5. Which option best describes tension force?
A. Pull force & contact force
B. Pull force & action-at-a-distance force
C. Push force & contact force
D. Push force & action-at-a-distance force

_____ 6. Which option best describes magnetic fields when the north pole of one magnet is near the north pole of another magnet?

- A. Pull force & contact force
- B. Pull force & action-at-a-distance force
- C. Push force & contact force
- D. Push force & action-at-a-distance force

_____ 7. Which option best describes magnetic fields when the north pole of one magnet is near the south pole of another magnet?

- A. Pull force & contact force
- B. Pull force & action-at-a-distance force
- C. Push force & contact force
- D. Push force & action-at-a-distance force

_____ 8. Which option has the greatest inertia?

- A. 10 kg box
- B. 20 kg box
- C. 40 kg box
- D. All have equal inertia

_____ 9. Which option has the greatest inertia?

- A. 60 kg ball moving at 3 m/s.
- B. 90 kg ball moving at 2 m/s.
- C. 180 kg ball moving at 1 m/s.
- D. All have equal inertia

_____ 10. Which option has the greatest inertia?

- A. 60 kg ball moving at 3 m/s.
- B. 60 kg ball moving at 6 m/s.
- C. 60 kg ball moving at 9 m/s.
- D. All have equal inertia

_____ 11. Which option will require the most amount of force to accelerate it?

- A. 60 kg ball moving at 3 m/s.
- B. 90 kg ball moving at 2 m/s.
- C. 180 kg ball moving at 1 m/s.
- D. All will require equal force.

_____ 12 Which option will require the greatest amount of force to accelerate it?

- A. 60 kg ball moving at 3 m/s.
- B. 60 kg ball moving at 6 m/s.
- C. 60 kg ball moving at 9 m/s.
- D. All will require equal force.

_____ 13 Which option had the most force acting upon it?

- A. 20 kg car accelerating by 3.0 m/s^2 .
- B. 20 kg car accelerating by 2.0 m/s^2 .
- C. 20 kg car accelerating by 1.0 m/s^2 .
- D. All had equal force acting upon them.

_____ 14 Which option had the most force acting upon it?

- A. 20 kg car accelerating by 3.0 m/s^2 .
- B. 30 kg car accelerating by 2.0 m/s^2 .
- C. 60 kg car accelerating by 1.0 m/s^2 .
- D. All had equal force acting upon them.

_____ 15 Which is true about an applied force?

- A. Acts parallel to the surface and in the same direction as the motion.
- B. Acts parallel to the surface and in the direction opposite of the motion.
- C. Acts perpendicular to the surface.
- D. Acts in the down direction towards the center of Earth's mass.

_____ 16 Which is true about gravity force?

- A. Acts parallel to the surface and in the same direction as the motion.
- B. Acts parallel to the surface and in the direction opposite of the motion.
- C. Acts perpendicular to the surface and pushes back on the object.
- D. Acts in the down direction towards the center of Earth's mass.

_____ 17 Which is true about normal force?

- A. Acts parallel to the surface and in the same direction as the motion.
- B. Acts parallel to the surface and in the direction opposite of the motion.
- C. Acts perpendicular to the surface and pushes back on the object.
- D. Acts in the down direction towards the center of Earth's mass.

_____ 18 Which is true about friction force?

- A. Acts parallel to the surface and in the same direction as the motion.
- B. Acts parallel to the surface and in the direction opposite of the motion.
- C. Acts perpendicular to the surface and pushes back on the object.
- D. Acts in the down direction towards the center of Earth's mass.

19 What does friction force do to moving objects?

- A. Converts kinetic energy into potential energy.
- B. Converts kinetic energy into heat.
- C. Converts potential energy into kinetic energy.
- D. Converts heat into potential energy.

20 What does friction force do to objects?

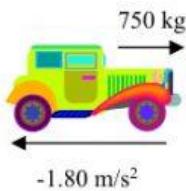
- A. Makes moving objects go faster, or moves objects if they are initially motionless.
- B. Changes objects from solid to liquid.
- C. Makes objects move in the direction opposite that they already move.
- D. Makes moving objects slow or stop, or keep objects motionless if they are initially motionless.

21 What does applied force do to objects?

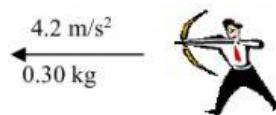
- A. Makes moving objects go faster, or moves objects if they are initially motionless.
- B. Changes objects from solid to liquid.
- C. Makes objects move in the direction opposite that they already move.
- D. Makes moving objects slow or stop, or keep objects motionless if they are initially motionless.

22 What is a free body diagram drawing?

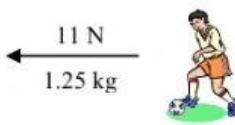
- A. It shows all the forces that an object of reference puts on its surroundings.
- B. It shows all the forces that an object of reference puts on another object.
- C. It shows all the forces that an object of reference puts on its surroundings and all of the forces that are acting upon the object of reference.
- D. It shows all the forces that are acting upon the object of reference.


Part 2: Calculating Forces. Calculate force, acceleration, and mass. Use correct units. Type the correct answer into the small rectangle. Show calculations and work in the larger rectangle.

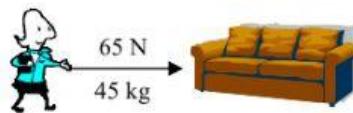
Force $F = m \cdot a$	Acceleration $a = \frac{F}{m}$	$F = \text{force (N) (net force)}$ $m = \text{mass (kg)}$ $a = \text{acceleration (m/s}^2)$ $\vec{v}_0 = \text{initial velocity (m/s)}$ $\vec{v}_f = \text{final velocity (m/s)}$
Acceleration $a = \frac{\vec{v}_f - \vec{v}_0}{t}$	Mass $m = \frac{F}{a}$	


1. The motor of a car accelerates a car by 1.33 m/s^2 . The mass of the car is 750 kg . Calculate the force of the motor causing the car to move.

Answer:


2. The brakes of a car accelerate the car by -1.80 m/s^2 . The mass of the car is 750 kg . Calculate the force of the brakes causing the car to slow.

Answer:


3. Tyrell is an expert archer. Tyrell's bow launches an arrow with an acceleration of 4.2 m/s^2 . The mass of the arrow is 0.30 kg . Calculate the force of the bow launching the arrow.

4. Jorge is a professional soccer player. Jorge kicks the soccer ball with a force of 11 N. The mass of the soccer ball is 1.25 kg. Calculate the acceleration experienced by the soccer ball.

Answer:

5. Alicia rearranged the furniture in her apartment. She pushed her sofa with a net force of 65 N. The mass of her sofa was 45 kg. Calculate the acceleration experienced by the sofa being pushed across the floor.

Answer:

6. A car was moving north on the freeway. It was traveling at 15 m/s. It got faster over 10 seconds time to have a final velocity of 45 m/s. The mass of the car was 1200 kg. Calculate the force of the motor accelerating the car. (Note, this is a two-step calculation).

Answer:

7. Steven was riding his bicycle very fast to get to school. He was moving at 16 m/s, but suddenly had to stop. He stopped his bike in 4.0 seconds. The mass of Steven + bike was 96 kg. Calculate the force of his brakes stopping the bike. (Note, this is a two-step calculation).

Answer:

Part 3: Forces Vocabulary. Drag and drop the vocabulary words into the correct blanks in the paragraph.

Acceleration

Contact

Gravity

Newton's

Resistance

Accelerate

Field

Inertia

Push

Vector

1. Forces are _____ or pull interactions between two or more objects.
2. Forces can be classified as _____ forces or action-at-a-distance forces.
3. Action at a distance forces are sometimes called _____ forces.
4. _____ is an example of an action-at-a-distance force because two objects do not need to touch in order to attract each other.
5. A force will cause an object to _____ or change their state of motion.
6. The units of force are _____, named after the famous English scientist who wrote about forces in *Philosophiae Principia Naturalis Mathematica*.
7. A force is a _____ because it needs both magnitude and direction to be correct.
8. Forces are calculated as the product of mass multiplied by _____.
9. The property of _____ is proportional to the object's mass.
10. Inertia is an object's _____ to acceleration. Objects want to keep their original states of motion.