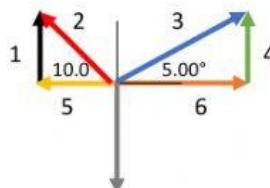


Name: _____
Program, Year & Section: _____

Score: _____
Date: _____

Worksheet 7c Static Equilibrium


1. A 90.0-N circus performer hangs from a rope tied between two poles as shown. Find the tensions T_1 and T_2 in the two parts of the rope.

Given:

$$W = \text{_____ N} \quad \theta_1 = \text{_____}^\circ \quad \theta_2 = \text{_____}^\circ$$

Find: (a) T_1 and T_2

For the following questions, write the letter of your answer.

_____ Which of the following is the force T_1 ?
a. 1 b. 2 c. 3 d. 4

_____ Which of the following is the force T_2 ?
a. 1 b. 2 c. 3 d. 4

_____ Which of the following is the x-component of T_1 ?
a. 1 b. 4 c. 5 d. 6

_____ Which of the following is the y-component of T_1 ?
a. 1 b. 4 c. 5 d. 6

_____ Which of the following is the x-component of T_2 ?
a. 1 b. 4 c. 5 d. 6

_____ Which of the following is the y-component of T_2 ?

a. 1 b. 4 c. 5 d. 6

_____ Which of the following will give the value of the x-component of T_1 ?

a. $T_1 \sin 5.00^\circ$ c. $T_1 \cos 10.0^\circ$
b. $T_1 \cos 5.00^\circ$ d. $T_1 \sin 10.0^\circ$

_____ Which of the following will give the value of the y-component of T_1 ?

a. $T_1 \sin 5.00^\circ$ c. $T_1 \cos 10.0^\circ$
b. $T_1 \cos 5.00^\circ$ d. $T_1 \sin 10.0^\circ$

_____ Which of the following will give the value of the x-component of T_2 ?

a. $T_2 \sin 5.00^\circ$ c. $T_2 \cos 10.0^\circ$
b. $T_2 \cos 5.00^\circ$ d. $T_2 \sin 10.0^\circ$

_____ Which of the following will give the value of the y-component of T_2 ?

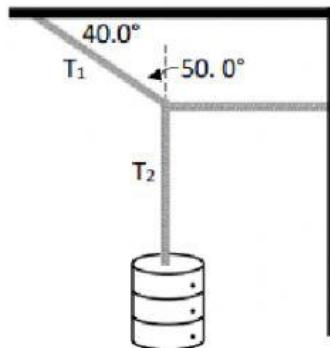
a. $T_2 \sin 5.00^\circ$ c. $T_2 \cos 10.0^\circ$
b. $T_2 \cos 5.00^\circ$ d. $T_2 \sin 10.0^\circ$

_____ Which of the following will give the equation for Σ_x ?

a. $T_{1X} + T_{2X} = 0$ c. $T_{2X} - T_{1X} = 0$
b. $T_{1X} - T_{2X} = 0$ d. $-T_{1X} - T_{2X} = 0$

_____ Which of the following will give the equation for Σ_y ?

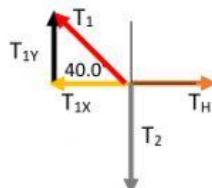
a. $T_{1Y} + T_{2Y} = 0$ c. $T_{2Y} - T_{1Y} = 0$
b. $T_{1Y} - T_{2Y} = 0$ d. $-T_{1Y} - T_{2Y} = 0$


_____ What is the value of T_1 ?

a. 90 N b. 342 N c. 346 N d. 688 N

_____ Which is the value of T_2 ?

a. 90 N b. 342 N c. 346 N d. 688 N


2. Find the weight of the object if the tension in the horizontal cord is 30.0 N.

Given:

$$T_H = \underline{\hspace{2cm}} \text{ N} \quad \theta_1 = \underline{\hspace{2cm}} {}^\circ$$

Find: (a) T_2 or W

For the following questions, write the letter of your answer.

_____ Which of the following will give the value of the x-component of T_1 ?

- a. $T_1 \sin 40.0^\circ$
- b. $T_1 \cos 40.0^\circ$
- c. T_H
- d. T_2

_____ Which of the following will give the value of the y-component of T_1 ?

- a. $T_1 \sin 40.0^\circ$
- b. $T_1 \cos 40.0^\circ$
- c. T_H
- d. T_2

_____ Which of the following will give the value of the x-component of T_2 ?

- a. $T_2 \sin 50.0^\circ$
- b. $T_2 \cos 50.0^\circ$
- c. $T_2 \cos 90.0^\circ$
- d. $T_2 \sin 90.0^\circ$

_____ Which of the following will give the value of the y-component of T_2 ?

- a. $T_2 \sin 50.0^\circ$
- b. $T_2 \cos 50.0^\circ$
- c. $T_2 \cos 90.0^\circ$
- d. $T_2 \sin 90.0^\circ$

_____ Which of the following will give the equation for Σ_x ?

- a. $T_{1X} + T_H = 0$
- c. $T_H - T_{1X} = 0$
- b. $T_{1X} - T_H = 0$
- d. $-T_H - T_{1X} = 0$

_____ Which of the following will give the equation for Σ_y ?

- a. $T_{1Y} + T_2 = 0$
- c. $T_2 - T_{1Y} = 0$
- b. $T_{1Y} - T_2 = 0$
- d. $-T_{1Y} - T_2 = 0$

_____ What is the value of T_1 ?

- a. 25.2 N
- b. 30.0 N
- c. 39.2 N
- d. 64.4 N

_____ Which is the value of T_2 ?

- a. 25.2 N
- b. 30.0 N
- c. 39.2 N
- d. 64.4 N