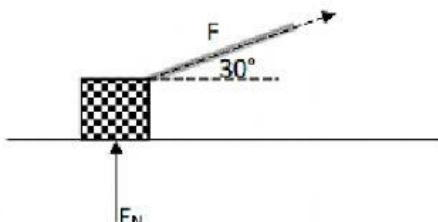


Name: _____
Program, Year & Section: _____

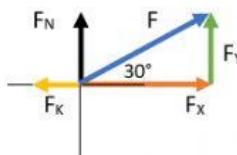
Score: _____
Date: _____


Worksheet 7b Newton's Laws of Motion

A. Identify the law of motion that applies to the following situations. Write 1, 2, or 3 for the First, Second and Third Laws of motion, respectively.

- _____ 1. A ball that hits the ground bounces upward
- _____ 2. A box remains stationary on the floor
- _____ 3. A skateboarder jumps forward from the skateboard
- _____ 4. A car travels along a level road gradually increasing its speed
- _____ 5. A coin that was dropped from the roof of a tall building

B. Solve the problem below. Show your complete solutions.


1. A boy pulls a 10.0-kg box by the attached cord along the smooth floor. The boy exerts a force of 40.0 N along a 30.0° . Assuming that the box starts from rest and a friction (f_k) of 12.0 N exists, calculate (a) the acceleration of the box, and (b) the horizontal distance traveled by the box if the boy pulls it for 5.00 s. (Express all answers to 3 s.f.)

Given:

$$F = \text{_____ N} \quad m = \text{_____ kg}$$
$$\theta = \text{_____ }^\circ \quad t = \text{_____ s}$$

Find: (a) a and (b) d

For the following questions, write the letter of your answer.

_____ Which of the following is the force responsible to move the box horizontally?

a. F b. f_k c. F_x d. F_y

_____ Which forces (when combined) will give the net force to make the box accelerate horizontally?

a. F & F_N b. f_k & F_x c. F_x & F_y d. F_y & F_k

_____ What is the value of the net force to make the box accelerate horizontally?

a. 5.40 N b. 8.00 N c. 20.0 N d. 22.6 N

$$a = \frac{F_{net}}{m}$$

$$a = \frac{N}{kg}$$

$$a = \frac{m}{s^2}$$

$$d = v_i t + \frac{at^2}{2}$$

$$d = \left(\frac{m}{s} \right) (s) + \frac{\left(\frac{m}{s^2} \right) (s)^2}{2} = m$$