

NAME :

CLASS & SEC. :

STD – 9 – MATHS – ONE MARK

Multiple Choice Questions

- If n is a natural number then \sqrt{n} is
 - always a natural number.
 - always an irrational number.
 - always a rational number.
 - may be rational or irrational
- Which of the following is not true?
 - Every rational number is a real number.
 - Every integer is a rational number.
 - Every real number is an irrational number.
 - Every natural number is a whole number.
- Which one of the following, regarding sum of two irrational numbers, is true?
 - always an irrational number.
 - may be a rational or irrational number.
 - always a rational number.
 - always an integer.
- Which one of the following has a terminating decimal expansion?
 - $\frac{5}{64}$
 - $\frac{8}{9}$
 - $\frac{14}{15}$
 - $\frac{1}{12}$
- Which one of the following is an irrational number
 - $\sqrt{25}$
 - $\sqrt{\frac{9}{4}}$
 - $\frac{7}{11}$
 - π
- An irrational number between 2 and 2.5 is
 - $\sqrt{11}$
 - $\sqrt{5}$
 - $\sqrt{2.5}$
 - $\sqrt{8}$
- The smallest rational number by which $\frac{1}{3}$ should be multiplied so that its decimal expansion terminates with one place of decimal is
 - $\frac{1}{10}$
 - $\frac{3}{10}$
 - 3
 - 30
- If $\frac{1}{7} = 0.\overline{142857}$ then the value of $\frac{5}{7}$ is
 - $0.\overline{142857}$
 - $0.\overline{714285}$
 - $0.\overline{571428}$
 - 0.714285
- Find the odd one out of the following.
 - $\sqrt{32} \times \sqrt{2}$
 - $\frac{\sqrt{27}}{\sqrt{3}}$
 - $\sqrt{72} \times \sqrt{8}$
 - $\frac{\sqrt{54}}{\sqrt{18}}$
- $0.\overline{34} + 0.\overline{34} =$
 - $0.\overline{687}$
 - $0.\overline{68}$
 - $0.\overline{68}$
 - $0.6\overline{87}$
- Which of the following statement is false?
 - The square root of 25 is 5 or -5
 - $-\sqrt{25} = -5$
 - $\sqrt{25} = 5$
 - $\sqrt{25} = \pm 5$
- Which one of the following is not a rational number?
 - $\sqrt{\frac{8}{18}}$
 - $\frac{7}{3}$
 - $\sqrt{0.01}$
 - $\sqrt{13}$
- $\sqrt{27} + \sqrt{12} =$
 - $\sqrt{39}$
 - $5\sqrt{6}$
 - $5\sqrt{3}$
 - $3\sqrt{5}$
- If $\sqrt{80} = k\sqrt{5}$, then $k =$
 - 2
 - 4
 - 8
 - 16
- $4\sqrt{7} \times 2\sqrt{3} =$
 - $6\sqrt{10}$
 - $8\sqrt{21}$
 - $8\sqrt{10}$
 - $6\sqrt{21}$
- When written with a rational denominator, the expression $\frac{2\sqrt{3}}{3\sqrt{2}}$ can be simplified as
 - $\frac{\sqrt{2}}{3}$
 - $\frac{\sqrt{3}}{2}$
 - $\frac{\sqrt{6}}{3}$
 - $\frac{2}{3}$
- When $(2\sqrt{5} - \sqrt{2})^2$ is simplified, we get
 - $4\sqrt{5} + 2\sqrt{2}$
 - $22 - 4\sqrt{10}$
 - $8 - 4\sqrt{10}$
 - $2\sqrt{10} - 2$
- $(0.000729)^{\frac{-3}{4}} \times (0.09)^{\frac{-3}{4}} =$
 - $\frac{10^3}{3^3}$
 - $\frac{10^5}{3^5}$
 - $\frac{10^2}{3^2}$
 - $\frac{10^6}{3^6}$
- If $\sqrt[3]{9^x} = \sqrt[3]{9^2}$, then $x =$
 - $\frac{2}{3}$
 - $\frac{4}{3}$
 - $\frac{1}{3}$
 - $\frac{5}{3}$
- The length and breadth of a rectangular plot are 5×10^5 and 4×10^4 metres respectively. Its area is _____.
 - $9 \times 10^1 \text{ m}^2$
 - $9 \times 10^9 \text{ m}^2$
 - $2 \times 10^{10} \text{ m}^2$
 - $20 \times 10^{20} \text{ m}^2$

P.LAKSHMANAN,
BT ASSISTANT,
GHSS., PAPPAPATTI,
MUSIRI TK, TRICHY DT.
9843954265.

