

Standard Deviation

Find the mean and standard deviation for the following sets of data

20 21 19 22 21 20 19 20 21 20

Round all answers to 2 decimal places! Check your calculator carefully

Mean = \bar{x} =

$$S.D = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}$$

$$= \sqrt{-}$$

=

—

Standard Deviation

Find the mean and standard deviation for the following sets of data

41 42 39 38 38 40 43 39

Round all answers to 2 decimal places! Check your calculator carefully

Mean = \bar{x} =

$$S.D = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}$$

$$= \sqrt{\quad}$$

=

二

Standard Deviation

Find the mean and standard deviation for the following sets of data

15.3 14.9 15.1 15.2 14.8 14.7

Round all answers to 2 decimal places! Check your calculator carefully

Mean = \bar{x} =

x	$x - \bar{x}$	$(x - \bar{x})^2$
Total		

$$S.D = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}$$

$$= \sqrt{\quad}$$

=

二

Standard Deviation

John and Joe play golf against each other 6 times in competition.

Calculate the mean and standard deviation for both players and comment on their performance over the year.

John	74	73	74	73	71	73
Joe	68	74	70	67	80	81

Mean = \bar{x} =

x	$x - \bar{x}$	$(x - \bar{x})^2$
Total		

Mean = \bar{x} =

x	$x - \bar{x}$	$(x - \bar{x})^2$
Total		

$$S.D = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}$$

$$= \sqrt{\text{_____}}$$

$$S.D = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}$$

$$= \sqrt{\text{_____}}$$

$$= \sqrt{\text{_____}}$$

$$= \sqrt{\text{_____}}$$

=

=

Comparison

Standard Deviation

The weekly takings in a small shop, to the nearest £, for weeks in December and March are shown below.

Calculate the mean and standard deviation and comment on any differences

December	2131	2893	2429	3519	
March	1727	2148	1825	2397	2901

Mean = \bar{x} =

x	$x - \bar{x}$	$(x - \bar{x})^2$
Total		

Mean = \bar{x} =

x	$x - \bar{x}$	$(x - \bar{x})^2$
Total		

$$S.D = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}$$

$$= \sqrt{\text{---}}$$

$$S.D = \sqrt{\frac{\sum(x - \bar{x})^2}{n-1}}$$

$$= \sqrt{\text{---}}$$

$$= \sqrt{\text{---}}$$

$$= \sqrt{\text{---}}$$

=

=

Comparison