

MCQ CLASS 10

ARITHMETIC PROGRESSION

1. If p, q, r and s are in A.P. then $r - q$ is
 - (a) $s - p$
 - (b) $s - q$
 - (c) $s - r$
 - (d) none of these

2. The $(n - 1)^{\text{th}}$ term of an A.P. is given by 7, 12, 17, 22, ... is
 - (a) $5n + 2$
 - (b) $5n + 3$
 - (c) $5n - 5$
 - (d) $5n - 3$

3. Next term of the AP $\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, \dots$ is
 - (a) $2\sqrt{7}$
 - (b) $6\sqrt{2}$
 - (c) $9\sqrt{2}$
 - (d) $7\sqrt{2}$

4. The n^{th} term of an A.P. is given by $a_n = 3 + 4n$. The common difference is
 - (a) 7
 - (b) 3
 - (c) 4
 - (d) 1

5. The 10^{th} term from the end of the A.P. -5, -10, -15, ..., -1000 is
 - (a) -955
 - (b) -945
 - (c) -950
 - (d) -965

6. the sum of 12 terms of an A.P. whose n^{th} term is given by $a_n = 3n + 4$
 - (a) 262
 - (b) 272
 - (c) 282
 - (d) 292

7. In an AP, if $a = 3.5$, $d = 0$, $n = 101$, then a_n will be
 - (A) 0
 - (b) 3.5
 - (c) 103.5
 - (d) 104.5

8. The first four terms of an AP, whose first term is -2 and the common difference is -2, are
 - (a) -2, 0, 2, 4
 - (b) -2, 4, -8, 16
 - (c) -2, -4, -6, -8
 - (d) -2, -4, -8, -16

9. The famous mathematician associated with finding the sum of the first 100 natural numbers is

(a) Pythagoras (b) Newton (c) Gauss (d) Euclid

10. The 21st term of the AP whose first two terms are -3 and 4 is

(a) 17 (b) 137 (c) 143 (d) -143

11. If the 2nd term of an AP is 13 and the 5th term is 25 , what is its 7th term?

(a) 30 (b) 33 (c) 37 (d) 38

12. 20th term of the AP $-5, -3, -1, 1, \dots$ is

(a) 33 (b) 30 (c) 20 (d) 25

13. The sum of all two-digit odd numbers is

(a) 2575 (b) 2475 (c) 2524 (d) 2425

14. n^{th} term of the sequence $a, a + d, a + 2d, \dots$ is

(a) $a + nd$ (b) $a - (n - 1)d$ (c) $a + (n - 1)d$ (d) $n + nd$

15. The sum of all odd integers between 2 and 100 divisible by 3 is

(a) 17 (b) 867 (c) 876 (d) 786
