Part 1. Find the acceleration for each object using the information in the table.

Remember: Acceleration =
$$\frac{V_{final} - V_{initial}}{time}$$

	Initial velocity	Final velocity	Time	Acceleration
1.	0 m/s	60 m/s	10 s	m/s²
2.	10 km/s	55 km/s	15 s	km/s²
3.	0 m/s	40 m/s	4 s	m/s ²
4.	60 m/s	40 m/s	10 s	m/s ²
5.	20 m/s	5 m/s	2 s	m/s²

Part 2. Read and answer the questions

6. A motorbike acce seconds.	elerates from rest (0 speed) up to a sp	eed of 30 m/s in 6
	a a hill from 22 m/s to a speed of 37 m . Calculate the acceleration.	n/s. The acceleration
	m/s ²	
	arth to bring people to Mars. It accele s in 8 seconds. Calculate the accele	
	km/s ²	

