
Tips & Techniques

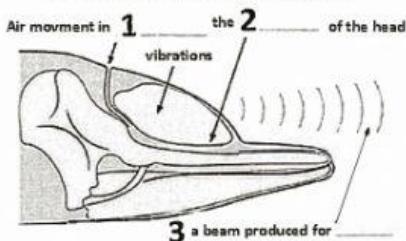
Labelling a diagram

Question 1-3: Label the diagram below. Choose **NO MORE THAN THREE WORDS** from the passage for each answer. Write your answers next to questions 1-3

Sample Task:

Cuckoo Clock

- **Tip 1:** This task requires you to complete descriptions of a diagram using words that appear in the text. Remember to use words and phrases that actually appear in the text. Do not try to think of different words or phrases with the same meaning.
- **Tip 2:** This task tests your understanding of the specific information.
- **Tip 3:** The aim is to check that you can understand a description of a process (mechanical or biological, for example) or how something works, not to test whether you already know specialised vocabulary.
- **Tip 4:** Questions do not necessarily follow the order in which information is given in the passage as they do in most other task types.
- **Tip 5:** Where you have to write words, check spelling carefully (the word(s) will always be in the text) and make sure you do not write more than the maximum word limit for that question type. Do not include unnecessary words.
- **Tip 6:** The answers are usually grouped together in one specific part of the text, where the diagram is described; usually in supporting ideas of the paragraphs.
- **Tip 7:** The answers are usually in one or two (body) paragraph(s).
- **Tip 8:** The questions usually begin at the top left of the diagram and go round in a clockwise direction. It is therefore essential to keep looking carefully at the diagram and the parts that you need to label so that you do not get confused about the order.


► Task approach:

- Read the instructions carefully to see how many words you can write
- Look at the parts of the diagram to be labelled and identify the type of word for each gap. Decide whether the missing information is a word or a number. Predict the answers.
- Skim and scan the text, focusing on relevant information. Use the key words in the questions to locate the answers in the passage. Look out for synonyms and parallel expressions. Read carefully once you find the search areas.
- Copy the words exactly as they appear in the text.
- After you fill in all the answers on a diagram, check that it makes sense overall.

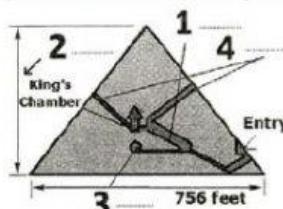
IELTS Reading Tasks (Example 1)**Labelling a diagram****► Whale SONG**

The mechanisms used by whales to produce sound vary from one species to another. Most whales produce whale sounds by passing air through a structure in the head called the phonic lips. The lips vibrate as the air passes through them and these vibrations can be consciously controlled with great sensitivity. They pass through to the melon of the head, which shapes and directs the sound into a beam for echolocation. The air may be recycled back to be used for sound creation yet again, or passed out through the blowhole. All toothed whales, except for the Sperm Whale, have two sets of phonic lips; therefore they are capable of making two sounds independently. Baleen Whales do not have phonic lip structures, only a larynx that appears to play a role in producing whale sound.

Label the diagram below. Choose **NO MORE THAN TWO WORDS** from the passage for each answer.

Sound production in whales**IELTS Reading Tasks (Example 2)****Labelling a diagram****► How helicopters work**

The helicopter is controlled from the cockpit, the small area at the front where the pilot sits and looks out. The controls need to be within reach of the pilot's hands—and feet, as they include pedals. In order to spin the shaft with enough force to lift a human being and the helicopter, you need an engine. The engine's drive shaft is connected to the main rotor shaft. This arrangement works really well until the vehicle leaves the ground. At that moment, there is nothing to keep the engine [and therefore the body of the vehicle] from spinning in the opposite direction to the main rotor. To keep the body from spinning, you need to apply a force to it. This is usually done by attaching another set of rotating wings to the tail boom, which is the section at the back of the helicopter, projecting from the main body. These wings are known as the tail rotor. The tail rotor pushes the air in a sideways direction, counteracting the engine's desire to spin the body, so this keeps the body of the helicopter from spinning.

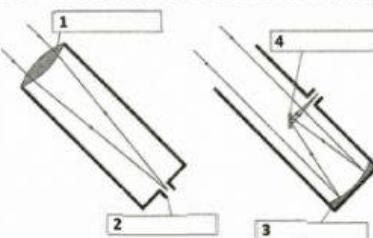

The proper technique to land a helicopter is to touch down evenly with both landing skids touching the ground at all points at the same time. Otherwise there is a risk of severe vibration that can cause serious damage and possibly destroy the helicopter.

Label the diagram below. Choose **NO MORE THAN TWO WORDS** from the passage.

IELTS Reading Tasks (Example 3)**Labelling a diagram****► Early Egyptian society**

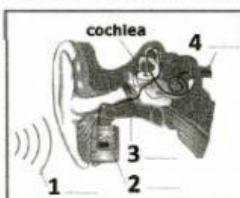
There are about 80 ancient pyramids in Egypt. The Great Pyramid at Gizeh, which King Cheops built as his tomb 5000 years ago, holds most interest. It stands with two other pyramids on a slight rise overlooking the River Nile. At the centre of the pyramid is the King's Chamber and leading down from there is a long narrow area known as the Grand Gallery. The pyramid covers 13 acres and contains 2,300,000 blocks of limestone, each weighing an average of 1.5 tons. Its pyramidal form has a perfectly square base with sides of 756 feet and a height of 481 feet. Situated directly below the King's Chamber is the Queen's Chamber and there are two air channels leading upwards from the centre of the pyramid to the outside.

Choose **NO MORE THAN THREE WORDS AND/OR NUMBERS** from the passage for each answer.



IELTS Reading Tasks (Example 4)**Labelling a diagram****► Movements of the planets**

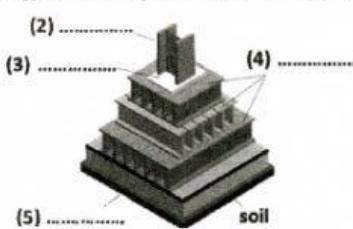
Isaac Newton's invention of the reflecting telescope is often seen as a defining moment in the study of astronomy, but in fact he only enhanced it; the original telescope was invented in 1608 by the Dutchman Lipperhey who used a convex lens in a tube focusing light into and eyepiece. The first telescopes were seen as an important military invention to detect the distant approach of enemy soldiers before Galileo used one to observe the night sky. Newton discovered that a concave mirror reflecting light onto a flat secondary mirror gave an enhanced image, which allowed a much more accurate view of the heavens. Furthermore, mirrors were easier to manufacture than lenses and could be made larger, thus increasing the ability of astronomers to chart the movements of the stars and planets. Yet it was Newton's discovery of the laws of gravity that explained why the planets move the way they do. It also enabled two astronomers in the 20th century to predict the existence, before it was seen in telescopes, of another small, outer asteroid, Pluto (at first classified as a planet), by observing slight variations in the orbit of Uranus.


The diagrams show the basic differences between Lipperhey's and Newton's designs for a telescope.

Label the diagram below. Choose **NO MORE THAN THREE WORDS** from the passage for each answer.

IELTS Reading Tasks (Example 5)**Labelling a diagram****► Bionic bodies**

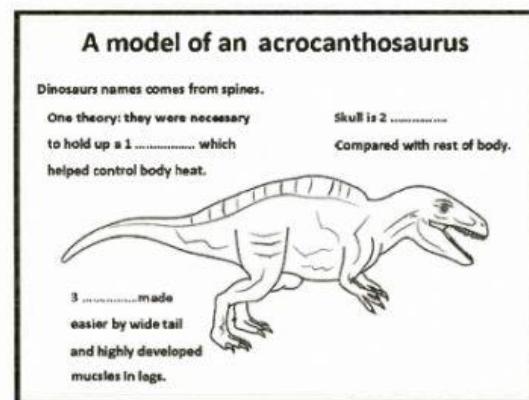
Bionic ears, or cochlear implants, have a long history, too. The first primitive versions were implanted in 1957 and thousands of hearing-impaired people are now using far more sophisticated versions. One of many such devices, the Clarion, has an external sound processor which converts incoming sounds to digital code, then transmits the code in sound waves to the 'bionic ear', sited beneath the skin at the side of the head. From there a thin internal electrode winds through the cochlea past the damaged hair cells, and sends the coded signals directly to the acoustic nerve at a million impulses a second.


Label the diagram using **NO MORE THAN TWO WORDS** from the text for each answer.

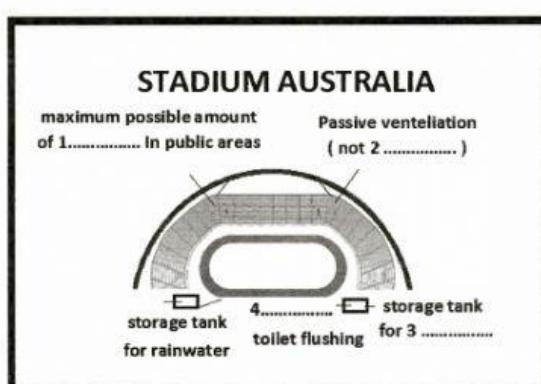
IELTS Reading Tasks (Example 6)**Labelling a diagram****► How skyscrapers work**

The central support structure of a skyscraper is its steel skeleton. Metal beams are riveted end to end to form vertical columns. At each floor level, these vertical columns are connected to horizontal girder beams. Many buildings also have diagonal beams running between the girders, for extra structural support. In a typical skyscraper substructure, each vertical column sits on a spread footing. The column rests directly on a cast-iron plate, which sits on top of a grillage. This is basically a stack of horizontal steel beams, lined side by side in two or more layers. The grillage rests on a thick concrete pad which is on the soil. Once the steel is in place, the entire structure is covered with concrete.

Label the diagram below. Choose **NO MORE THAN THREE WORDS** from the passage for each answer.


A typical skyscraper substructure (1)

IELTS Reading Tasks (Example 7)**Labelling a diagram****► Walking with dinosaurs**


The Manchester University team have used the computer simulations to produce a model of a giant meat-eating dinosaur. It is called an acrocanthosaurus which literally means 'high spined lizard' because of the spines which run along its backbone. It is not really known why they are there but scientists have speculated they could have supported a hump that stored fat and water reserves. There are also those who believe that the spines acted as a support for a sail. Of these, one half think it was used as a display and could be flushed with blood and the other half think it was used as a temperature-regulating device. It may have been a mixture of the two. The skull seems out of proportion with its thick, heavy body because it is so narrow and the jaws are delicate and fine. The feet are also worthy of note as they look surprisingly small in contrast to the animal as a whole. It has a deep broad tail and powerful leg muscles to aid locomotion. It walked on its back legs and its front legs were much shorter with powerful claws.

Label the diagram below. Choose **NO MORE THAN ONE WORD** from the passage for each answer.

IELTS Reading Tasks (Example 8)**Labelling a diagram****► Stadium Australia**

Stadium Australia was the most environmentally friendly Olympic stadium ever built. Every single product and material used had to meet strict guidelines, even if it turned out to be more expensive. All the timber was either recycled or derived from renewable sources. In order to reduce energy' costs, the design allowed for natural lighting in as many public areas as possible, supplemented by solar-powered units. Rainwater collected from the roof ran off into storage- tanks, where it could be tapped for pitch irrigation. Stormwater run-off was collected for toilet flushing. Wherever possible, passive ventilation was used instead of mechanical air- conditioning. Even the steel and concrete from the two end stands due to be demolished at the end of the Olympics was to be recycled. Furthermore, no private cars were allowed on the Homebush site. Instead, every spectator was to arrive by public transport, and quite right too. If ever there was a stadium to persuade a sceptic like myself that the Olympic Games do, after all, have a useful function in at least setting design and planning trends, this was the one. I was, and still am, I freely confess, quite knocked out by Stadium Australia.

Label the diagram below. Choose **NO MORE THAN THREE WORDS** from the reading passage for each answer.

