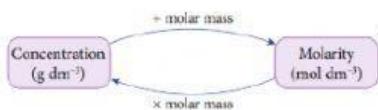


Concentration of Aqueous Solution

Tuesday, November 9, 2021 12:59 PM

Solving numerical problems related to concentration of solutions

1. 6 g of solid magnesium sulphate, MgSO_4 is added into a beaker containing 200 cm^3 of water. Calculate the concentration in g dm^{-3} , for the solution produced.

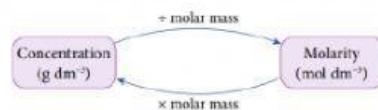

$$\text{Volume of water} = \frac{200}{\boxed{}} = \boxed{} \text{ dm}^3$$

$$\begin{aligned}\text{Concentration} &= \frac{\text{mass (g)}}{\text{Volume (dm}^3\text{)}} \\ &= \frac{\boxed{} \text{ g}}{\boxed{} \text{ dm}^3} = \boxed{} \text{ g dm}^{-3}\end{aligned}$$

2. 0.4 mol of zinc chloride, ZnCl_2 is dissolved in water to produce 2 dm^3 of solution. Calculate the molarity of the solution prepared.

$$\text{Molarity} = \frac{\text{no of mol of } \text{ZnCl}_2}{\text{volume of water (dm}^3\text{)}} = \frac{\boxed{} \text{ mol}}{\boxed{} \text{ dm}^3} = \boxed{} \text{ mol dm}^{-3}$$

3. What is the concentration of 0.5 mol dm^{-3} sulphuric acid, H_2SO_4 in g dm^{-3} ?
 [Relative atomic mass: H = 1, O = 16, S = 32]



$$\text{Molarity} = \boxed{\quad} \text{ mol dm}^{-3}$$

$$\begin{aligned}\text{Molar mass of H}_2\text{SO}_4 &= 2(\text{H}) + 1(\text{S}) + 4(\text{O}) \\ &= \boxed{\quad} \text{ g mol}^{-1}\end{aligned}$$

$$\begin{aligned}\text{Concentration of H}_2\text{SO}_4 &= \boxed{\quad} \text{ mol dm}^{-3} \times \boxed{\quad} \text{ g mol}^{-1} \\ &= \boxed{\quad} \text{ g dm}^{-3}\end{aligned}$$

4. The concentration of sodium chloride solution, NaCl is 1.989 g dm^{-3} . Calculate the molarity of the solution in mol dm^{-3} .
 [Relative atomic mass: Na = 23, Cl = 35.5]

$$\text{Concentration} = \boxed{\quad} \text{ g dm}^{-3}$$

$$\begin{aligned}\text{Molar mass of NaCl} &= 1(\text{Na}) + 1(\text{Cl}) \\ &= \boxed{\quad} + \boxed{\quad} \\ &= \boxed{\quad} \text{ g mol}^{-1}\end{aligned}$$

$$\begin{aligned}\text{Molarity of NaCl} &= \frac{\boxed{\quad} \text{ g dm}^{-3}}{\boxed{\quad} \text{ g mol}^{-1}} \\ &= \boxed{\quad} \text{ mol dm}^{-3}\end{aligned}$$

5. Calculate the number of moles of sodium hydroxide, NaOH in 2.5 dm^3 of 0.2 mol dm^{-3} sodium hydroxide solution, NaOH.

Volume in dm Molarity

$$n = MV$$

Volume of solution
is in **dm³**.

$$\begin{aligned}\text{Number of moles of NaOH, } n &= \text{Molarity} \times \text{Volume} \\ &= \boxed{\quad} \times \boxed{\quad} \\ &= \boxed{\quad} \text{ mol}\end{aligned}$$

6. Given the molarity of 250 cm^3 of barium hydroxide solution, $\text{Ba}(\text{OH})_2$ is 0.1 mol dm^{-3} .
How many moles of hydroxide ion, OH^- is in the solution?

$$n = \frac{MV}{1000}$$

Volume of
solution is
in cm^3 .

↓
Molarity, M

$$\begin{aligned}\text{Number of mole of } \text{Ba}(\text{OH})_2 &= \frac{\text{Molarity} \times \text{Volume}}{1000} \\ &= \frac{\boxed{} \times \boxed{}}{1000} \\ &= \boxed{} \text{ mol}\end{aligned}$$