

Classwork 1 Measurements

Name:

Date :

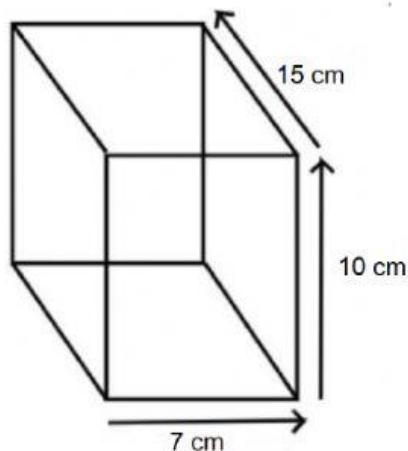
- I. Write the SI units for each of the physical quantities. Write the word (unit) not the symbol.

A	Speed	
B	acceleration	
C	momentum	
D	velocity	
E	displacement	
F	density	
G	volume	
H	mass	
I	weight	
J	energy	

1. For the following non-SI units, write the symbol of its SI units.

A	Gram per cubic centimeters	
B	Newton per cubic centimeters	
C	Gram-meter per minute	
D	Kilometer per minute	
E	milligram	

2. Match the formula with the corresponding quantities it measures.


	density
	volume
	weight
	mass
	displaced water

A	<i>final volume – initial volume</i>
B	<i>mass x gravitational constant</i>
C	<i>density x mass</i>
D	<i>mass ÷ volume</i>
E	<i>density x volume</i>
F	<i>length x width x height</i>

3. The stone of mass 90 grams is weighed on a spring scale measured in Newtons. Show the necessary working.

- Convert 90 grams to kilograms.
- What will be the weight reading of the stone on the spring scale?
- The stone is taken to the moon where the gravitational constant is 1.6N/kg. Calculate the weight of the stone on the surface of the moon.
- The stone is taken to Mars where the gravitational constant is 3.4N/kg. Calculate the weight of the stone on the surface of Mars.

5. A student checks the purity of a small, uniform bar of gold by measuring its density. He measures the dimensions of the bar. The values are shown below.

- a. Calculate the volume of the bar of gold.

- b. Calculate the density of gold if the mass is 19,950 grams.