

Force and motion

Identify the force applied in each picture. Is it a push or a pull? Drag your answer to the correct box.

push

pull

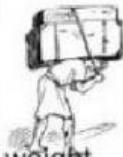
Vocabulary	Meaning
Force	
Interaction	
Acceleration	
Deformation	
Gravity	
Friction	
Static friction	
Sliding friction	
Rolling friction	
Fluid friction	
Tension	

$$\text{Weight (N)} = \text{Mass (kg)} \times \text{Acceleration due to gravity (m/s}^2\text{)}$$

$$W = mg$$

1.) Calculate the weight of this lunchbox if its mass is 1.2 kg.

2.) Jenny experiences an average downward force of 441 N anywhere she goes on Earth. Calculate her mass.

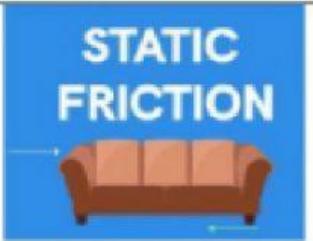

3.) Calculate the acceleration due to gravity on the planet where this 80 kg astronaut weighs only 304 N.

4.) This bird has a mass of 0.8 kg. Calculate the weight of the bird acting downward as it flies.

5.) Joe is carrying a load of building supplies and likely injuring his back by supporting 882 N of weight. Calculate the mass of what he is carrying.

6.) This armed rover weighs 1900 N and has a mass of 340 kg. What is the acceleration due to gravity on its current planet?

7.) This feather experiences 0.075 N of downward force. Assuming it is on earth, what is its mass?



8.) Java the alien has a mass of 50 kg. How much would he weigh on earth?

9.) This 200 kg stag that weighs 1,960 N on earth would only weigh 324 N on the moon. Calculate the moon's acceleration due to gravity.

Examples	Type of Friction	Characteristics	Illustration
	Static	Frictional Force causing object(s) to stay at rest. No Movement	STATIC FRICTION
	Sliding	Frictional Force between two objects causing the object(s) to slide past each other.	
	Drag Force	Frictional Force between an object and a fluid.	
	Rolling	Frictional Force between two objects causing the object(s) to roll.	ROLLING FRICTION

c