Heating and Cooling Curves

Heating Curves

1.

If the temperature of a pure solid is measured at intervals as it is heated and changes state to a liquid and then a gas, and the temperature is plotted against time, a HEATING curve is obtained. A heating curve is shown for Figure 1 below. The curve below shows that as heating occurs the temperature of the substance increases. The graph shows two horizontal/sections where the temperature remains horizontal/sections where the temperature remains horizontal/sections where the temperature remains horizontal/sections where the temperature remains horizontal/sections where the temperature remains horizontal/sections and horizontal/sections and horizontal/sections and horizontal/sections and <a href="maintain-o

Activity #1: Heating Curves

Use the graph in figure 1 below to	r 20 20 1		6 12 12N 0
answer the following questions.	180 Phase Ch	ange Diagram	+
At point A, the beginning of	160		
observations, the substance exists in a state. Material in this phase has a volume	140		D E
state. Material in this	100 B		7 -
phase has a volume	80	3/	
and shape. With each passing minute,	40 A		
is added to the	2 4 6		16 18 20 22
substance. This causes the molecules	Figure SE	Time (minutes) Q Figure * ARABIC 1: Heati	ing Curve
of the substance to gain more	energy and hence	faster wh	ich we detect by a
temperature rise in the substance.			
At point B , the temperature of the substa	As some to determine		
°C. This first change in state is	where	_ occurs as the tempera	ture remains
constant at the point of t	he substance. The su	bstance is now in the	phase.
Material in this phase has	volume and	shape. The	energy put to the
substance between minutes 5 and 9 was u	used to convert the su	bstance from a	to a

c) Be	tween 9 and 13 minutes, t	ne added energy in	creases the temperature of the substance. During the time	
fro	R R 1995 ARA STATE		. By point E, the substance is completely in the	
× 			point. Material in this phase has	
vol	ume andsh	ape. The energy p	at to the substance between minutes 13 and 18 converted	
the substance from a to a		to a	state. Beyond point E , the substance is still in the	
(=	phase, but	the molecules are	moving faster as indicated by the increasing temperature.	
In summar	y:			
From A to	B, the material is in the _	state	of matter	
From B to	C, the process of	is taking	is taking pace	
From C to	D, the material is in the _	sta	te of matter	
From D to	E, the process of	is takir	is taking place	
Anything :	after E is in the	state of matte	r	

Activity # 2: Heating Curves

2. Based on the information above label the Heating curve below in the spaces provided below using the following words:

Figure 2:Blank Heating Curve

Activity #3: Interpreting Cooling Curves

Cooling Curves

If the temperature of a gas is measured at intervals as it is cooled and changes state to a liquid and then to a solid, and the temperature is plotted on a graph against time a cooling curve is obtained. Figure 3 shows the cooling curve of a water.

3. Answer the questions below based on the cooling curve in Figure 3 below.

Figure 3: Cooling Curve

- a) What is the freezing point temperature of the substance?
- b) What is the boiling point temperature of the substance?
- c) What is the melting point temperature of the substance?
- d) On the graph above, Label the gas, liquid and Solid.
- e) State the time period where the substance is a solid.
- State the time period where the substance is a liquid.
- g) During which time period would the substance possess kinetic energy?_____

