

CHEMBUDDY CHAPTER 2
2.1 BOHR'S ATOMIC MODEL

CHOOSE THE CORRECT ANSWER

NO	QUESTION	ANSWER
1	Energy is inversely proportional to	A. wavelength B. frequency C. wave number D. Planck's constant
2	Calculate the energy required to excite an electron from $n = 2$ to $n = 4$.	A. 4.09×10^{-19} J C. 2.05×10^6 J B. 5.45×10^{-19} J D. 2.74×10^6 J
3	Choose the highest energy involved when an electron makes a transition.	A. $n=4$ to $n=3$ B. $n=2$ to $n=1$ C. $n=4$ to $n=2$ D. $n=3$ to $n=1$
4	What is the frequency, in s^{-1} , of a radiation with energy of 3.37×10^{-19} J per photon?	A. 5.08×10^{54} s^{-1} C. 5.08×10^{15} s^{-1} B. 5.08×10^{14} s^{-1} D. 5.08×10^{15} s^{-1}
5	Calculate the wavelength in nm of the second line in Lyman series.	A. 1.026×10^{-16} nm B. 1.026×10^2 nm C. 9.75×10^6 nm D. 975×10^{-3} nm
6	What is the minimum amount of ionization energy of hydrogen atom at ground state?	A. 1312.36 $kJ\ mol^{-1}$ B. 2.18×10^{-18} J C. 2.18×10^{-18} $J\ mol^{-1}$ D. 1312.36 $J\ mol^{-1}$
7	Calculate the wavelength of the third line in the Balmer series.	A. 810 nm C. 434 nm B. 343 nm D. 520 nm

CHEMBUDDY CHAPTER 2

2.1 BOHR'S ATOMIC MODEL

8	In the hydrogen atom, an electron transit from a higher to a lower energy level emits a photon with a wavelength of 1282 nm in Paschen series. Determine the energy level of the excited state for this transition.	A. $n = 3$ B. $n = 4$ C. $n = 6$ D. $n = 5$
9	A line with wavelength of 434 nm was observed in the Balmer series of the emission spectrum of hydrogen. Calculate its frequency.	A. $5.91 \times 10^{14} \text{ s}^{-1}$ B. $7.19 \times 10^{14} \text{ s}^{-1}$ C. $6.19 \times 10^{14} \text{ s}^{-1}$ D. $6.91 \times 10^{14} \text{ s}^{-1}$
10	Calculate the energy of the photon emitted to produced second line in the Paschen series.	A. $2.55 \times 10^{-19} \text{ J}$ B. $1.45 \times 10^{-19} \text{ J}$ C. $1.51 \times 10^{-19} \text{ J}$ D. $1.55 \times 10^{-19} \text{ J}$

