CHEMBUDDY

CHAPTER 2: ATOMIC STRUCTURE

- 1. What is the wavelength, λ of the fourth line in the Balmer's series? [Rydberg constant, R_H = $1.0971 \times 10^7 \text{ m}^{-1}$]
 - A. 410nm
- C. 486nm
- B. 432nm
- D. 654nm
- 2. Calculate the energy required to excite an electron from n =2 to n=4.
 - A.
- 4.09 x 10⁻¹⁹ J
- B.
- 5.45 x 10⁻¹⁹ J 2.05 x 10⁶ J
- C. D.
- 2.74 x 10⁶ J
- 3. What is the frequency, in s⁻¹, of a radiation with energy of 3.37 x 10⁻¹⁹ J per photon?
 - A. 5.08 x 10⁻⁵⁴ s⁻¹
 - B. 5.08 x 10¹⁴ s⁻¹
 - C. 5.08 x 10⁻¹⁵ s⁻¹
 - D. 5.08 x 10¹⁵ s⁻¹
- 4. Calculate the wavelength of the second line in Lyman series.
 - A. 1.30 x10⁻⁷ m
 - B. 1.23 x 10⁻⁷ m
 - C. 5.08 x 10⁻¹⁵ m
 - D. 1.03 x10⁻⁷ m
- 5. What is the minimum amount of ionization energy of hydrogen atom at ground state?
 - A. 1312.36 kJ mol⁻¹
 - B. 2.18 x 10⁻¹⁸ J
 - C. 2.18 x 10⁻¹⁸J mol⁻¹
 - D. 1312.36 J mol⁻¹

- 6. Calculate the frequency of the second line in Lyman series.
 - A. 1.91 x 10¹⁴ s⁻¹
 - B. 2.91 x 10¹⁵ s⁻¹
 - C. 3.23 x 10¹⁴ s⁻¹
 - D. 1.65 x 10¹⁵ s⁻¹
- 7. Calculate the wavelength of the third line in the Balmer series.

C. 434 nm

- A. 810 nm
- B. 343 nm D. 520 nm
- 8. FIGURE 1 shows the first four lines in the Brackett series of hydrogen emission spectrum.

FIGURE 1

Calculate the wavelength of the radiation that produces the fourth line.

- A. 5.56 x 10⁻⁶ m
- B. 2.34 x 10⁻⁵ m
- C. 1.94 x 10⁻⁵ m
- D. 1.94 x 10⁻⁶ m
- 9. In the hydrogen atom, an electron transit from a higher to a lower energy level emits a photon with a wavelength of 1282 nm in Paschen series. Determine the energy level of the excited state for this transition.
 - A. n = 3
- C. n = 6

- B.
- n = 4
- D. n = 5

10 Aline w	vith wavelength of 434 nm	was observed in	the Balmer seri	es of the emis	sion spectrum
of hydr	•	was observed in	The Damer Sen	es of the erris	sion spectrum
A.	5.91 x 10 ¹⁴ s ⁻¹				
B.	$7.19 \times 10^{14} \text{s}^{-1}$				
C.	6.19 x 10 ¹⁴ s ⁻¹				
D.	6.91 x 10 ¹⁴ s ⁻¹				

- 11. Calculate the energy of the photon emitted to produced second line in the Paschen series.
 - A. 2.55 x 10⁻¹⁹ J
 - B. 1.45 x 10⁻¹⁹ J
 - C. 1.51 x 10⁻¹⁹ J
 - D. 1.55 x 10⁻¹⁹ J
- How many electronic transitions between the following energy levels would be expected for Lyman and Paschen

-			n=1	Lyman Series	Paschen Series
A.	5	3			
B.	5	2			
C.	4	3			
D.	5	4			

- 13. Calculate the wavelength in nm of the second line in Lyman series.
 - A. 1.026 x10⁻¹⁶ nm
 - B. 1.026 x 10² nm
 - C. 9.75 x10⁶ nm
 - D. 975 x 10⁻³ nm

- 14. Q is an element with proton number of
 - 21. Write the electronic configuration of Q.
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$
 - C. $1s^2 2s^2 2p^6 3s^2 3p^1$
 - D. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$
- Give a set of quantum numbers for the electrons that occupy the fourth shell in Scandium (Sc).
 - A. n= 3, l=1, m=0, s=+1
 - B. n= 3, l=1, m=1, s= 1/2
 - C. n=4, l=0, m=1, $s=+\frac{1}{2}$
 - D. n=4, l=0, m=0, s= ½
- 16. Given the set of quantum number for the highest energy electron in atom X.

Write the electronic configuration of X.

- A. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2$
- B. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4p^{21}$
- C. 1s₂ 2s₂ 2p₆ 3s₂ 3p₆ 4s₂ 3d₁₀ 4p₁
- D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^1$
- 17. Give a set of quantum number of one valence electron in the s orbital of arsenic, As.
 - A. n=4, I =0, m= 1, s = -1/2
 - B. n=4, l=1, m=0, s= +1
 - C. n=4, l= 0, m= 0, s= -1
 - D. n=4, l=0, m=0, s= -1/2
- 18. The proton number of copper (Cu) is 29.

Write the valence electronic configuration of the copper atom.

- A. 4s² 3d¹⁰
- C. 4s2 3d8
- B. 4s¹ 3d¹0
- D. 3d¹⁰4s²

- Nickel has 28 protons. Give a set of possible quantum number for the electron with the highest energy in Ni²⁺ ion.
 - A. n=3 l=2 m=-1 s=-1/2
 - B. n=3 l=1 m=-1 s= +1/2
 - C. n=4 l=0 m=-1 s= +1/2
 - D. n=4 l=0 m=0 s= -1/2
- 20. Ion that have the similar electronic configuration with 10Ne is;
 - A. O²⁺
- C. N³⁻
- B. Mg²⁺
- D. CI
- 21. The charge of an ion P is 2-, in which it contains 2 inner electrons and eight outermost electrons. The electronic configuration of atom P is;
 - A. 1s² 2s² 2p⁶
 - B. 1s² 2s² 2p⁴
 - C. 1s² 2s² 2p⁶ 3s²
 - D. 1s² 2s² 2p⁶ 3s²
- 22. Which of the following electronic configuration represent an element that form ion with a charge of 2-.
 - A. 1s² 2s² 2p⁶ 3s²
 - B. 1s² 2s² 2p⁶ 3s² 3p²
 - C. 1s² 2s² 2p⁶ 3s² 3p⁴
 - D. $1s^2 2s^2 2p^6 3s^2 3p^5$
- 23. Choose the most suitable reason of the anomality in electronic configuration of Chromium with the proton number of 24.
 - Stability of fully filled 3d orbital.
 - Stability of half-filled orbital.
 - C. Stability of half-filled 4s orbital.
 - D. Stability of half-filled 3d orbital.

- 24. Determine the electronic configuration of the most stable ion of element X-25.;
 - A. 1s₂ 2s₂ 2p₆ 3s₂ 3p₆ 4s₂ 3d₅
 - B. 1s₂ 2s₂ 2p₆ 3s₂ 3p₆ 4s₂ 3d₆
 - C. 1s₂ 2s₂ 2p₆ 3s₂ 3p₆ 3d₅
 - D. 1s₂ 2s₂ 2p₆ 3s₂ 3p₆ 4s₂ 3d₁₀
- 25. Shown below are a set of quantum number of the highest energy electron in P^+ ion. Determine the electronic configuration of P atom.

- A. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹
- B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
- C. 1s² 2s² 2p⁶ 3s² 3p⁶
- D. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹

