



CHOOSE THE CORRECT ANSWER

| NO | QUESTION                                                                                                                                                                                                                                                                                                                                                                                          | ANSWER                                                                                             |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| 1  | Select the compound in which sulphur has the highest oxidation number                                                                                                                                                                                                                                                                                                                             | A. $\text{SO}_2$<br>B. $\text{H}_2\text{SO}_3$<br>C. $\text{SCl}_2$<br>D. $\text{Na}_2\text{SO}_4$ |  |
| 2  | Adipic acid, $\text{H}_2\text{C}_6\text{H}_8\text{O}_4$ , is produced by a reaction between cyclohexane and excess oxygen. The equation for the reaction is:<br><br>$2\text{C}_6\text{H}_{12}(l) + 5\text{O}_2(g) \rightarrow 2\text{H}_2\text{C}_6\text{H}_8\text{O}_4(l) + 2\text{H}_2\text{O}(l)$<br><br>If 45.0 g of cyclohexane is used, calculate the theoretical yield of the adipic acid. | A. 73.8 g<br>B. 83.7 g<br>C. 75.8 g<br>D. 78.3 g                                                   |  |
| 3  | The oxidation number of vanadium atom in $(\text{NH}_4)_3\text{VO}_4$ is                                                                                                                                                                                                                                                                                                                          | A. +3<br>B. +4<br>C. +5<br>D. +7                                                                   |  |
| 4  | A 72.0 g vanadium pentoxide, $\text{V}_2\text{O}_5$ , reacts with excess aluminium, Al at high temperature to produce vanadium metal, and aluminium oxide, $\text{Al}_2\text{O}_3$ . Calculate the mass vanadium produced. [Ar V: 51]                                                                                                                                                             | A. 4.04 g<br>B. 40.4 g<br>C. 44.0 g<br>D. 4.40 g                                                   |  |
| 5  | Antimony can react with chlorine gas to give antimony trichloride.<br><br>$\underline{\text{Sb}}(s) + \underline{\text{Cl}_2}(g) \longrightarrow \underline{\text{SbCl}_3}(l)$<br><br>Which of the following is the most correct set of stoichiometric coefficients to balance this equation?                                                                                                     | A. 1, 1, 1<br>B. 4, 6, 4<br>C. 1, 3, 2<br>D. 2, 3, 2                                               |  |

## CHEMBUDDY CHAPTER 1

## 1.3 STOICHIOMETRY

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 6  | <p>In an experiment, 1.46 g of magnesium is added into 160.00 mL of 0.50 mol L<sup>-1</sup> hydrochloric acid. The reaction involved is:</p> $\text{Mg(s)} + 2\text{HCl(aq)} \rightarrow \text{MgCl}_2\text{(aq)} + \text{H}_2\text{(g)}$ <p>Determine the limiting reactant.</p>                                                                                                                                                         | <p>A. Mg(s)      C. MgCl<sub>2</sub> (aq)<br/> B. HCl (aq)      D. H<sub>2</sub>(g)</p>                                   |
| 7  | <p>Given equations below:</p> $\text{S}_2\text{O}_8^{2-} + 2\text{e} \rightarrow 2\text{SO}_4^{2-}$ $\text{Mn}^{2+} + 4\text{H}_2\text{O} \rightarrow \text{MnO}_4^- + 8\text{H}^+ + 5\text{e}$ <p>How many mole of S<sub>2</sub>O<sub>8</sub><sup>2-</sup> are needed to oxidise 20mL, 0.2 M Mn<sup>2+</sup>?</p>                                                                                                                        | <p>A. 4x10<sup>-3</sup> mol      C. 1x10<sup>-2</sup> mol<br/> B. 1x10<sup>-3</sup> mol      D. 2x10<sup>-2</sup> mol</p> |
| 8  | <p>In an experiment, 30g aluminium reacts with 100g Br<sub>2</sub> to form aluminium bromide, AlBr<sub>3</sub>. What is the percentage yield for the reaction if only 55g of AlBr<sub>3</sub> were produced at the end of the experiment?</p>                                                                                                                                                                                             | <p>A. 18.57 %      C. 49.45%<br/> B. 20.22%      D. 42.30%</p>                                                            |
| 9  | <p>A 25 mL solution containing C<sub>2</sub>O<sub>4</sub><sup>2-</sup> ions was titrated with KMnO<sub>4</sub> in acidic medium as follow:</p> $5\text{C}_2\text{O}_4^{2-} + 2\text{MnO}_4^- + 16\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O} + 10\text{CO}_2$ <p>Calculate the concentration of C<sub>2</sub>O<sub>4</sub><sup>2-</sup> ions if the titration required 30.50 mL of 1.25 M KMnO<sub>4</sub> solution.</p> | <p>A. 3.81 M      C. 4.23 M<br/> B. 3.32 M      D. 4.78 M</p>                                                             |
| 10 | <p>The reaction between sulphuric acid, H<sub>2</sub>SO<sub>4</sub> and barium hydroxide, Ba(OH)<sub>2</sub> is shown below</p> $\text{H}_2\text{SO}_4 + \text{Ba(OH)}_2 \rightarrow \text{BaSO}_4 + 2\text{H}_2\text{O}$ <p>Calculate the mass of Ba(OH)<sub>2</sub> required to produce 4.35g BaSO<sub>4</sub>, if the percentage yield of the reaction is 85%.</p>                                                                     | <p>A. 3.75 g      C. 3.48 g<br/> B. 6.97 g      D. 5.12 g</p>                                                             |

